390 research outputs found
Penerapan Seo (Search Engine Optimization) Menggunakan Teknik Together in a Single Connection (Tsc) Dalam Meningkatkan Kunjungan Pada Sebuah Blog
One of the internet service used by the people of Indonesia is a blog that can be accessed via http://blogspot.com or http://wordpress.com and others. Everyone can use this medium for the purpose of publication of information in the form of text, images, sounds, or video without having to master web programming languages. One of the obstacles a person who has a blog is a way of increasing number of visitors to his blog. In order for many visitors the blog owner needs to understand about SEO (Search Engine Optimization).To allow users to blog in increasing the number of visitors and ranking his blog, they invented a system that utilizes parallel processing techniques and create a new method, named TSC (Together in a Single Connection) to increase the number of visitors, number of pages viewed and ranking.Increase blog traffic system based on parallel processing can improve the effectiveness in increasing traffic to a blog. With this system the blog owner is expected to be easier to rise to visit his blog
The Effects of Erosion and Desurfacing on Soil Properties and Productivity of a Typic Haplustoll
Topsoil is a valuable resource to humankind. Current food production cannot be continued without this resource. Topsoil protection efforts must be continued or increased to meet future demands of mankind. Erosion reduces productivity but losses may not be detected until land is no longer suitable to produce crops economically, furthermore, other variables may mask the relationship. Technology advancement including improved seed varieties, modern fertilizer, and herbicide have doubled or tripled many North American crop yields in the past 50 years. The impact of topsoil removal is largely determined by subsoil properties as they affect root growth, soil available water and nutrient availability in the soil. A new soil environment is encountered when topsoil is removed either by natural or artificial erosion. This new environment in most cases is less suited for plant growth than original topsoil. Germination and emergence are often poor because of less than ideal soil physical properties. Topsoil loss may alter root system growth. The potential for nutrient and water uptake consequently depends on the new level of soil nutrients and available water surrounding the root system, and the morphology of the root system. Topsoil removal may change resistance of surface aggregates to the beating action of raindrops. The stability of surface aggregates is important because aggregates below the surface are protected from rapid wetting by those above. Unstable surface aggregates are easily broken down and transported in suspension. This can lead to the formation of crusts that inhibit the movement of water and air into the soil. Maridasan and Chibber obtained a significant negative correlation between aggregate stability and the erosion ratio. Furthermore, aggregate stability influences plant growth indirectly through its relationship to the maintenance of a porosity suitable for air, water, and root movement. Recently, researchers have devoted considerable effort to quantify the relationship between topsoil removal and soil productivity, principally on the basis of data from the North Central Region of the United States. The objectives of this study were: (1) to determine the effects of erosion and desurfacing on soil physical and chemical properties. (2) to examine the relationships of aggregate stability (a measure of soil structural stability) with soil properties which result from the erosion and desurfacing of a Beadle Tax adjunct (Fine, montmorillonitic, mesic Typic Haplustoll). (3) to assess and compare the effect of erosion and desurfacing on continuous corn yield for this soil in eastern South Dakota
Recommended from our members
Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation
Tillage plays a major role in nutrient dynamics under dryland cropping systems, but there remains uncertainty regarding the long-term impacts of tillage on nutrient availability. The objective of this study was to examine the influence of tillage intensity and timing on micronutrient concentration of soils and winter wheat (Triticum aestivum L.) under dryland winter wheat–pea (Pisum sativum L.) or WW-P rotation. The treatments included moldboard tillage in fall (FT) and spring (ST), disk/chisel tillage (DT), and no-tillage (NT). The concentrations of Mehlich III extractable boron, manganese, zinc, copper, and iron in soil were unaffected by the tillage methods; however, a significant decline in extractable zinc in the top 10 cm soil was observed compared to an adjacent undisturbed grass pasture (GP) (NT: 2.3 mg kg−1 vs. GP: 6.0 mg kg−1). In the upper 10 cm soil surface, NT (123 mg kg−1) maintained the extractable manganese concentration with GP (175 mg kg−1) whereas FT (97 mg kg−1), ST (92 mg kg−1), and DT (113 mg kg−1) had lower manganese than GP. Soil pH declined in the upper 10 cm under NT more than in the rest of the WW-P treatments. The results suggest NT can play a vital role in sustaining micronutrient availability due to decreased soil pH and the greater amount of organic matter within the surface soil of NT compared to other tillage method
Recommended from our members
Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat-Fallow Rotation
The insights gained from the long-term impacts of tillage and N fertilization on soil fertility are crucial for the development of sustainable cropping systems. The objectives of this study were to quantify the effects of 75 years of tillage and N fertilization on macronutrients in soil and wheat (Triticum aestivum L.) tissues grown in a winter wheat–summer fallow rotation. The experiment included three types of tillage (disc, DP; sweep, SW; and moldboard, MP) and five N application rates (0, 45, 90, 135, and 180 kg ha−1). Soil and tissue samples were analyzed for the concentration of total N, S, and C, Mehlich III extractable P, K, Mg, Ca in the soil, and the total concentration of the same nutrients in wheat tissue. Soil N concentration was significantly greater under DP (1.10 g kg−1) than under MP (1.03 g kg−1). The P concentration in upper 20 cm soil depth increased with increased N rates. Comparison of experiment plots to a nearby undisturbed pasture revealed a decline of P (32%), SOC (34%), Mg (77%), and Ca (86%) in the top 10 cm soil depth. The results suggest that DP with high N rates could reduce the macronutrient decline in soil and plant over time
Impact of land use/cover change and slope gradient on soil organic carbon stock in Anjeni watershed, Northwest Ethiopia
Today’s agri-food systems face the triple challenge of addressing food security, adapting to climate change, and reducing the climate footprint by reducing the emission of greenhouse gases (GHG). In agri-food systems, changes in land use and land cover (LULC) could affect soil physicochemical properties, particularly soil organic carbon (SOC) stock. However, the impact varies depending on the physical, social, and economic conditions of a given region or watershed. Given this, a study was conducted to quantify the impact of LULC and slope gradient on SOC stock and C sequestration rate in the Anjeni watershed, which is a highly populated and intensively cultivated area in Northwest Ethiopia. Seventy-two soil samples were collected from 0–15 and 15–30 cm soil depths representing four land use types and three slope gradients. Soil samples were selected systematically to match the historical records (30 years) for SOC stock comparison. Four land use types were quantified using Landsat imagery analysis. As expected, plantation forest had a significantly (p \u3c 0.05) higher SOC (1.94 Mg ha−1) than cultivated land (1.38 Mg ha−1), and gentle slopes (1–15%) had the highest SOC (1.77 Mg ha−1) than steeper slopes (\u3e 30%). However, higher SOC stock (72.03 Mg ha−1) and SOC sequestration rate (3.00 Mg ha−1 year−1) were recorded when cultivated land was converted to grassland, while lower SOC stock (8.87 Mg ha−1) and sequestration rate (0.77 Mg ha−1 year−1) were recorded when land use changed from cultivation to a plantation forest. The results indicated that LULC changes and slope gradient had a major impact on SOC stock and C sequestration rate over 30 years in a highly populated watershed. It is concluded that in intensively used watersheds, a carefully planned land use that involves the conversion of cultivated land to grassland could lead to an increase in soil C sequestration and contributes to reducing the carbon footprint of agri-food systems
Disorders of sex development : timing of diagnosis and management in a single large tertiary center
Background: We describe the phenotypic spectrum and timing of diagnosis and management in a large series of patients with disorders of sexual development (DSD) treated in a single pediatric tertiary center. Methods: DSD patients who had visited our tertiary center during the survey period (between 2004 and 2014) were identified based on an ICD-10 inquiry, and their phenotypic and molecular genetic findings were recorded from patient charts. Results: Among the 550 DSD patients, 53.3% had 46,XY DSD; 37.1% had sex chromosome DSD and 9.6% had 46,XX DSD. The most common diagnoses were Turner syndrome (19.8%, diagnosed at the mean age of 4.7 +/- 5.5 years), Klinefelter syndrome (14.5%, 6.8 +/- 6.2 years) and bilateral cryptorchidism (23.1%). Very few patients with 46,XY DSD (7%) or 46,XX DSD (21%) had molecular genetic diagnosis. The yearly rate of DSD diagnoses remained stable over the survey period. After the release of the Nordic consensus on the management of undescended testes, the age at surgery for bilateral cryptorchidism declined significantly (P <0.001). Conclusions: Our results show that (i) Turner syndrome and Klinefelter syndrome, the most frequent single DSD diagnoses, are still diagnosed relatively late; (ii) a temporal shift was observed in the management of bilateral cryptorchidism, which may favorably influence patients' adulthood semen quality and (iii) next-generation sequencing methods are not fully employed in the diagnostics of DSD patients.Peer reviewe
Recommended from our members
Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management
Crop residues are an important source of plant nutrients. However, information on the various methods of residue management on micronutrients in soil and wheat (Triticum aestivum L.) over time is limited. A long-term (84-year) agroecosystem experiment was assessed to determine the impact of fertilizer type and methods of crop residue management on micronutrients over time under dryland winter wheat-fallow rotation. The treatments were: no N application with residue burning in fall (FB), spring (SB), and no residue burn (NB); 45 kg N ha−1 with SB and NB; 90 kg N ha−1 with SB and NB; pea vines; and farmyard manure (FYM) and a nearby undisturbed grass pasture (GP). Wheat grain, straw, and soil samples from 1995, 2005, and 2015 were used to determine tissue total and soil Mehlich III extractable Mn, Cu, B, Fe, and Zn, and soil pH. After 84 years, extractable Mn and B in the top 10 cm of soil decreased in all plots, except for B in FYM and SB. The FYM plots had the highest extractable Mn (114 mg kg−1) in the top 10 cm soil; however, it declined by 33% compared to the GP (171 mg kg−1). Extractable Zn in the top 10 cm of soil increased with FYM while it decreased with inorganic N application in 2015; however, total Zn in grain increased by 7% with inorganic N (90 kg ha−1) application compared to FYM application. The results suggest that residue management had similar impact on soil micronutrients. Inorganic N and FYM application can be integrated to reduce micronutrient losses from cultivatio
- …