177 research outputs found

    Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation

    Get PDF
    notes: PMCID: PMC3655956This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Genome-wide association (GWA) studies have been limited by the reliance on common variants present on microarrays or imputable from the HapMap Project data. More recently, the completion of the 1000 Genomes Project has provided variant and haplotype information for several million variants derived from sequencing over 1,000 individuals. To help understand the extent to which more variants (including low frequency (1% ≤ MAF <5%) and rare variants (<1%)) can enhance previously identified associations and identify novel loci, we selected 93 quantitative circulating factors where data was available from the InCHIANTI population study. These phenotypes included cytokines, binding proteins, hormones, vitamins and ions. We selected these phenotypes because many have known strong genetic associations and are potentially important to help understand disease processes. We performed a genome-wide scan for these 93 phenotypes in InCHIANTI. We identified 21 signals and 33 signals that reached P<5×10(-8) based on HapMap and 1000 Genomes imputation, respectively, and 9 and 11 that reached a stricter, likely conservative, threshold of P<5×10(-11) respectively. Imputation of 1000 Genomes genotype data modestly improved the strength of known associations. Of 20 associations detected at P<5×10(-8) in both analyses (17 of which represent well replicated signals in the NHGRI catalogue), six were captured by the same index SNP, five were nominally more strongly associated in 1000 Genomes imputed data and one was nominally more strongly associated in HapMap imputed data. We also detected an association between a low frequency variant and phenotype that was previously missed by HapMap based imputation approaches. An association between rs112635299 and alpha-1 globulin near the SERPINA gene represented the known association between rs28929474 (MAF = 0.007) and alpha1-antitrypsin that predisposes to emphysema (P = 2.5×10(-12)). Our data provide important proof of principle that 1000 Genomes imputation will detect novel, low frequency-large effect associations

    Genomic Risk Profiling of Ischemic Stroke: Results of an International Genome-Wide Association Meta-Analysis

    Get PDF
    Introduction: Familial aggregation of ischemic stroke derives from shared genetic and environmental factors. We present a meta-analysis of genome-wide association scans (GWAS) from 3 cohorts to identify the contribution of common variants to ischemic stroke risk.Methods: This study involved 1464 ischemic stroke cases and 1932 controls. Cases were genotyped using the Illumina 610 or 660 genotyping arrays; controls, with Illumina HumanHap 550Kv1 or 550Kv3 genotyping arrays. Imputation was performed with the 1000 Genomes European ancestry haplotypes (August 2010 release) as a reference. A total of 5,156,597 single-nucleotide polymorphisms (SNPs) were incorporated into the fixed effects meta-analysis. All SNPs associated with ischemic stroke (P < 1 x 10(-5)) were incorporated into a multivariate risk profile model.Results: No SNP reached genome-wide significance for ischemic stroke (P < 5 x 10(-8)). Secondary analysis identified a significant cumulative effect for age at onset of stroke (first versus fifth quintile of cumulative profiles based on SNPs associated with late onset, beta = 14.77 [10.85, 18.68], P = 5.5 x 10(-12)), as well as a strong effect showing increased risk across samples with a high propensity for stroke among samples with enriched counts of suggestive risk alleles (P < 5 x 10(-6)). Risk profile scores based only on genomic information offered little incremental prediction.Discussion: There is little evidence of a common genetic variant contributing to moderate risk of ischemic stroke. Quintiles based on genetic loading of alleles associated with a younger age at onset of ischemic stroke revealed a significant difference in age at onset between those in the upper and lower quintiles. Using common variants from GWAS and imputation, genomic profiling remains inferior to family history of stroke for defining risk. Inclusion of genomic (rare variant) information may be required to improve clinical risk profiling

    A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    Get PDF
    Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a metaanalysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) < 0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-re

    Identification and single-base gene-editing functional validation of a cis-EPO variant as a genetic predictor for EPO-increasing therapies

    Get PDF
    Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD

    Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain

    Get PDF
    A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We present a set of integrated experiments that investigate the effects of common genetic variability on DNA methylation and mRNA expression in four human brain regions each from 150 individuals (600 samples total). We find an abundance of genetic cis regulation of mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation across the genome. We show peak enrichment for cis expression QTLs to be approximately 68,000 bp away from individual transcription start sites; however, the peak enrichment for cis CpG methylation QTLs is located much closer, only 45 bp from the CpG site in question. We observe that the largest magnitude quantitative trait loci occur across distinct brain tissues. Our analyses reveal that CpG methylation quantitative trait loci are more likely to occur for CpG sites outside of islands. Lastly, we show that while we can observe individual QTLs that appear to affect both the level of a transcript and a physically close CpG methylation site, these are quite rare. We believe these data, which we have made publicly available, will provide a critical step toward understanding the biological effects of genetic variation

    A meta-analysis of gene expression signatures of blood pressure and hypertension.

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study

    Get PDF
    Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson’s disease, and Alzheimer’s disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected by clinical teams after clinical examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also in only participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14–2·70; p=1·05 × 10–⁴⁸), SNCA (rs7681440; OR 0·73, 0·66–0·81; p=6·39 × 10–¹⁰), and GBA (rs35749011; OR 2·55, 1·88–3·46; p=1·78 × 10–⁹). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27–1·79; p=2·21 × 10–⁶); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease

    A comprehensive screening of copy number variability in dementia with Lewy bodies

    Get PDF
    The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk. (C) 2019 Elsevier Inc. All rights reserved.Peer reviewe
    corecore