13 research outputs found

    Estrategias para mejorar el aprendizaje de una lengua extranjera (inglés) con la utilización de las tic en el grado 6º a jornada de la mañana de la i.e.d. lorencita villegas de santos, del banco magdalena

    Get PDF
    El proyecto realizado está relacionado con estrategias para mejorar y fortalecer el aprendizaje de una lengua extranjera, para este caso, inglés, con la utilización de las TIC para un grado especifico 6 A jornada de la mañana de la Institución Educativa Departamental Lorencita Villegas de Santos de El Banco, Magdalena por medio de un aula virtual. La utilización de una LMS surge por la necesidad de aumentar el nivel de conocimiento en el área de inglés en la Institución desde el pre escolar hasta el grado11 debido a la falta de docentes especializados y a la poca intensidad horaria que contempla el PEI de nuestra Institución, lo cual no se está llevando a cabo, y por ende, al llegar los estudiantes a grado 6 y a grado 11 cuando presentan las pruebas Saber, se ve reflejada la falta de ese conocimiento en el no alcance de las competencias y habilidades comunicativas

    Insights from atomistic models on loop nucleation and growth in α-Fe thin films under Fe+ 100 keV irradiation

    Get PDF
    The question of how loops nucleate and grow in α-Fe under irradiation is addressed using object kinetic Monte Carlo with parameters from molecular dynamics and density functional theory calculations. Two models are considered for the formation of loops, both based on recent atomistic simulations. In one model loops are formed by the interaction between ½ loops. In a second model small interstitial clusters, nucleated in the collision cascade, can grow as or ½ loops. Comparing results from the calculations to experimental measurements of loop densities, ratios and sizes produced by Fe+ 100 keV irradiation of UHP Fe thin films at room temperature, the validity of the models is assessed. For these experimental conditions, the reaction model does not seem to be very efficient in the production of loops due to the fast recombination of ½ loops to surfaces. Therefore, in our thin film simulations (at very low carbon concentrations) most loops are a result of the nucleation model. In bulk simulations this effect could change since the probability of interactions between ½ loops would increase. Moreover, simulations show that total visible cluster concentration depends strongly on sample thickness and carbon content, while crystal orientation does not seem to have a significant role. Finally, the ratio of to ½ visible clusters changes with increased carbon concentration.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The research leading to these results is partly funded by the European Atomic Energy Communitys (Euratom) Seventh Framework Programme FP7/2007e2013 under grant agreement No. 604862 (MatISSE project) and in the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials

    Multiscale modelling for fusion and fission materials: the M4F project

    Get PDF
    The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and its effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project)

    Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions

    Get PDF
    Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics

    TEM Observation of Loops Decorating Dislocations and Resulting Source Hardening of Neutron-Irradiated Fe-Cr Alloys

    No full text
    International audienceSeveral open issues remain concerning the quantitative understanding of irradiation hardening in high-Cr steels. One of these issues is addressed here by correlating yield points that are observed in stress-strain curves with dislocation decoration observed by TEM for neutron-irradiated Fe-Cr alloys. It is found that both higher neutron exposure and higher Cr content promote irradiation-induced loops to arrange preferentially along dislocation lines. Consequently, the activation of dislocation sources requires unlocking from the decorating loops, thus resulting in a yield drop. This process is considered within the source hardening model as opposed to the dispersed barrier hardening model, the latter aimed to describe dislocation slip through a random array of obstacles. Microstructure-informed estimates of the unlocking stress are compared with measured values of the upper yield stress. As functions of neutron exposure, a cross-over from the dominance of dispersed-barrier hardening accompanied by smooth elastic-plastic transitions to the dominance of source hardening accompanied by yield drops is observed for Fe-9% Cr and Fe-12% Cr

    TEM Observation of Loops Decorating Dislocations and Resulting Source Hardening of Neutron-Irradiated Fe-Cr Alloys

    No full text
    International audienceSeveral open issues remain concerning the quantitative understanding of irradiation hardening in high-Cr steels. One of these issues is addressed here by correlating yield points that are observed in stress-strain curves with dislocation decoration observed by TEM for neutron-irradiated Fe-Cr alloys. It is found that both higher neutron exposure and higher Cr content promote irradiation-induced loops to arrange preferentially along dislocation lines. Consequently, the activation of dislocation sources requires unlocking from the decorating loops, thus resulting in a yield drop. This process is considered within the source hardening model as opposed to the dispersed barrier hardening model, the latter aimed to describe dislocation slip through a random array of obstacles. Microstructure-informed estimates of the unlocking stress are compared with measured values of the upper yield stress. As functions of neutron exposure, a cross-over from the dominance of dispersed-barrier hardening accompanied by smooth elastic-plastic transitions to the dominance of source hardening accompanied by yield drops is observed for Fe-9% Cr and Fe-12% Cr

    Quantification of APT physical limitations on chemical composition of precipitates in Fe–Cr alloys

    No full text
    International audienceAmong the different nano-features at the origin of embrittlement of Fe–Cr alloys and steels, α′ precipitates play a major role in alloys with Cr content higher than about 10at.%. If Atom Probe Tomography (APT) is recognized as an efficient technique for characterizing α′ precipitates, discussions remain on its ability to measure the actual composition of small particles. Two APT limitations are at the origin of these discussions: its lateral resolution (and on a smaller scale the depth resolution) and local magnification effects due to the difference in field evaporations between the matrix and the particles. In this study, the impacts of these two limitations are quantified for the first time using numerical approaches and an analytical model. This will provide an overview of the interpretation for the α’ particles chemical composition experimentally measured by APT. The results show that: (i) the major effect of local magnification is ion focussing with no mixing in the core of the particles for particle radius larger than 1 nm, (ii) lateral resolution is the main contributor to the composition bias. Depending on the lateral resolution, the core of the small particles may be diluted by matrix atoms but the dilution does not exceed 5.2 at.%. The extent of the decrease in measured Cr concentration of the particles depends on the Cr concentration difference between particles and the surrounding matrix

    Quantification of APT physical limitations on chemical composition of precipitates in Fe–Cr alloys

    No full text
    International audienceAmong the different nano-features at the origin of embrittlement of Fe–Cr alloys and steels, α′ precipitates play a major role in alloys with Cr content higher than about 10at.%. If Atom Probe Tomography (APT) is recognized as an efficient technique for characterizing α′ precipitates, discussions remain on its ability to measure the actual composition of small particles. Two APT limitations are at the origin of these discussions: its lateral resolution (and on a smaller scale the depth resolution) and local magnification effects due to the difference in field evaporations between the matrix and the particles. In this study, the impacts of these two limitations are quantified for the first time using numerical approaches and an analytical model. This will provide an overview of the interpretation for the α’ particles chemical composition experimentally measured by APT. The results show that: (i) the major effect of local magnification is ion focussing with no mixing in the core of the particles for particle radius larger than 1 nm, (ii) lateral resolution is the main contributor to the composition bias. Depending on the lateral resolution, the core of the small particles may be diluted by matrix atoms but the dilution does not exceed 5.2 at.%. The extent of the decrease in measured Cr concentration of the particles depends on the Cr concentration difference between particles and the surrounding matrix

    Effect of Neutron Flux on an Irradiation-Induced Microstructure and Hardening of Reactor Pressure Vessel Steels

    No full text
    International audienceThe existing knowledge about the effect of neutron irradiation on the mechanical properties of reactor pressure vessel steels under reactor service conditions relies to a large extent on accelerated irradiations realized by exposing steel samples to a higher neutron flux. A deep understanding of flux effects is, therefore, vital for gaining service-relevant insight into the mechanical property degradation. The existing studies on flux effects often suffer from incomplete descriptions of the irradiation-induced microstructure. Our study aims to give a detailed picture of irradiation-induced nanofeatures by applying complementary methods using atom probe tomography, positron annihilation, small-angle neutron scattering and transmission electron microscopy. The characteristics of the irradiation-induced nanofeatures and the dominant factors responsible for the observed increase of Vickers hardness are identified. Microstructural changes due to high flux conditions are smaller nm-sized solute atom clusters with almost the same volume fraction and a higher concentration of vacancies and sub-nm vacancy clusters compared to low flux conditions. The results rationalize why pronounced flux effects on the nanofeatures, in particular on solute atom clusters, only give rise to small or moderate flux effects on hardening

    Effect of Neutron Flux on an Irradiation-Induced Microstructure and Hardening of Reactor Pressure Vessel Steels

    No full text
    International audienceThe existing knowledge about the effect of neutron irradiation on the mechanical properties of reactor pressure vessel steels under reactor service conditions relies to a large extent on accelerated irradiations realized by exposing steel samples to a higher neutron flux. A deep understanding of flux effects is, therefore, vital for gaining service-relevant insight into the mechanical property degradation. The existing studies on flux effects often suffer from incomplete descriptions of the irradiation-induced microstructure. Our study aims to give a detailed picture of irradiation-induced nanofeatures by applying complementary methods using atom probe tomography, positron annihilation, small-angle neutron scattering and transmission electron microscopy. The characteristics of the irradiation-induced nanofeatures and the dominant factors responsible for the observed increase of Vickers hardness are identified. Microstructural changes due to high flux conditions are smaller nm-sized solute atom clusters with almost the same volume fraction and a higher concentration of vacancies and sub-nm vacancy clusters compared to low flux conditions. The results rationalize why pronounced flux effects on the nanofeatures, in particular on solute atom clusters, only give rise to small or moderate flux effects on hardening
    corecore