2,085 research outputs found
Fracturas Pélvicas: una visión moderna
Las fracturas pélvicas se presentan con severidad variable, desde lesiones de baja energía, habitualmente
por compresión lateral, hasta lesiones secundarias a un traumatismo de alta energía con inestabilidad
del anillo pélvico, frecuentes lesiones asociadas y altas tasas de morbilidad y mortalidad. El tratamiento inicial de
estas severas lesiones se sustenta en la aplicación de protocolos de soporte vital avanzado, disminuir el sangrado
pélvico con medidas que reduzcan el volumen de la pelvis y estabilicen la lesión, como la fijación externa y ante
inestabilidad persistente técnicas de angiografía-embolización o empaquetamiento. Tras la estabilización inicial
del paciente el objetivo será la restauración anatómica del anillo pélvico predictora de la recuperación funcional.
Las técnicas de estabilización definitiva actuales evolucionan hacía técnicas menos invasivas y percutáneas con
el paciente preferentemente decúbito supino. A pesar de los avances en el tratamiento, el dolor, la disfunción sexual
o persistencia de problemas neurológicos crónicos se asocian a las lesiones más graves1-3.Pelvic fractures have a wide spectrum of severity depending on the strength of the trauma, ranging
from low energy injuries, usually by lateral forces, until secondary lesions to high-energy trauma with pelvic ring
instability, and high rates of morbidity and mortality. High-energy pelvic fractures require advanced life support
and the first step in treatment is to reduce pelvic bleeding with external fixation and to continuing instability
embolization angiography techniques or packing. Later, when patient is hemodynamically stable the goal is to
achieve an anatomical reconstruction of pelvic ring which is considered nowadays the most powerful predictor of
functional recovery. Less invasive and percutaneous stabilization techniques have emerged in recent years. Nevertheless,
despite the progress in treatment, pain, sexual dysfunction or chronic persistent neurological problems
are associated with more severe injuries1-3
Tratamiento del choque femoroacetabular mediante miniabordaje anterior. Resultados a corto plazo
El tratamiento quirúrgico del choque femoroacetabular (CFA) es un práctica clínica cada vez más frecuente en nuestra especialidad. Objetivo. Analizar los resultados clínicos y radiológicos de una primera serie de pacientes diagnosticados de CFA intervenidos mediante miniabordaje anterior. Material y métodos. Estudio prospectivo de 30 pacientes con una edad media de 36,2 años y un seguimiento mínimo de 12 meses. La valoración clínica se ha realizado mediante las escalas SF-36, WOMAC y NAHS. Evaluamos la corrección radiológica de la deformidad y la progresión o no del grado de coxartrosis. Resultados. Se obtuvo una corrección adecuada de la deformidad en el 93% de los casos, 27 de los 30 pacientes presentaron una mejoría clínica significativa en los test realizados. La complicación más frecuente fue la meralgia parestésica del femorocutáneo (5 casos), 1 paciente precisó de sustitución protésica por evolución del grado de coxartrosis. Conclusiones. El tratamiento del CFA mediante mini abordaje anterior es un procedimiento seguro y reproducible. Permite la corrección de las anormalidades anatómicas y la obtención de resultados clínicos satisfactorios en una cohorte de pacientes jóvenes.Surgical treatment of femoroacetabular impingement (FAI) is an increasingly common clinical practice in our speciality. Aim. To analyze the clinical and radiological results of a first series of patients diagnosed with a FAI treated with anterior mini-open approach. Material and methods. Prospective study of 30 patients with a mean age of 36.2 years with a minimum follow-up of 12 months was made. Clinical assessment was performed using the SF-36, WOMAC and NAHS scales. We evaluate the correction of the radiologic deformity and progression of the osteoarthritis grade. Results. An adequate correction of the deformity in 93% of cases was obtained, 27 of the 30 patients showed significant clinical improvement in all tests performed. The most common complication was meralgia paresthesia of the femoro-cutaneous nerve (5 cases), 1 patient required prosthetic replacement for progression of the osteoarthritis grade. Conclusions. FAI treatment by mini-open approach is a safe and reproducible procedure. This technique allows correction of anatomical abnormalities and obtains satisfactory clinical outcomes in a cohort of young patients
Tratamiento quirúrgico de las metástasis diafisarias de huesos largos en pacientes oncológicos estadio IV
La incidencia de enfermedad metastásica ósea se ha incrementado debido a la mayor supervivencia
de los pacientes con cáncer. El esqueleto es la tercera localización mas frecuente de metástasis procedentes de
tumores primarios. Se evalúan las indicaciones quirúrgicas para evitar la aparición de fracturas patológicas y
los resultados obtenidos en metástasis diafisarias de huesos largos. Cincuenta lesiones han sido tratadas en 48
pacientes. En todos los casos se estabilizó con un clavo intramedular. La supervivencia media fue de 11 meses (2
días-48 meses). Al final del seguimiento la puntuación media en la escala MSTS fue 25/30 y 27/30 para miembro
superior e inferior respectivamente. Debe considerarse la radioterapia postoperatoria para disminuir la progre
-
sión de la enfermedad. Hay múltiples factores a tener en cuenta en el tratamiento de pacientes con metástasis
óseas incluyendo comorbilidades, características histológicas del tumor primario, la expectativa de vida y acti
-
vidad del paciente y el dolor.The incidence of metastatic bone disease is increasing as patients with cancer living longer. The
skeleton is the third most common site for metastasis that originates from primary carcinomas. We evaluated the
indications for surgery to prevent pathological fractures and the results obtained in metastases of the diaphyseal
long bones. Fifty metastases bone lesion were treated in 48 patients. In all cases an intramedullary nail was in
-
serted. The chance of surviving was 11 moths average (2 days-48 moths). At follow-up, the MSTS average was
25/30 and 27/30 for superior and inferior limb respectively. To minimize disease progression postoperative ex
-
ternal-beam irradiation should be considered. There are multiples factors to consider in the treatment of patients
with bone metastasic, including comorbidities, the histological characteristics of the primary tumor, the expected
life span of the patient, the patient ?s activity level and pain
Prótesis de pirocarbono en fracturas complejas de cabeza de radio.
Presentamos los resultados de un estudio observacional retrospectivo sobre 23 casos de fracturas
complejas de cabeza de radio tratadas mediante la implantación de una prótesis cabeza radio de pircocarbono (Mo
-
Pyc). La distribución por sexos fue 10 hombres y 13 mujeres, y la edad media de 54 años. El seguimiento medio fue
de 70 meses (48-93 meses). La principal causa fue una fractura de cabeza de radio no reconstruible con inestabilidad
asociada de codo. La evaluación clínica se realizó con la Mayo Elbow Performance Score (MEPS). Radiográficamen
-
te se valoró la congruencia articular, el tamaño de la prótesis, la radiolucencia periprotésica, la osificación heterotópica
y la osteoartritis. Al final del seguimiento la media de la escale MEPS fue 82/100, con 84 % resultados de excelentes
y buenos. La flexión media fue de 130º, extensión -30º, pronación 76º y supinación 77º. La estabilidad del codo
fue buena en todos los casos y no observamos migración proximal del radio. Observamos radiolucencia alrededor
del vástago en 5 pacientes, pero sin aparente repercusión clínica. Las complicaciones fueron una paresia del nervio
interóseo posterior con recuperación funcional al cabo de 11 semanas, 2 pacientes presentaron "overstuffing" con
subluxación posterior asociada que necesitó realizar exéresis de la cabeza y una osificación heterotópica con repercu
-
sión sobre el balance articular que necesitó 2 cirugías, todos ellos con resultados clínicos aceptables. Los resultados
son alentadores.The authors present the results of a retrospective observational study of 23 cases of a complex radial
head fractures treated by pyrocarbon radial head prosthesis (MoPyc). This modular radial head prosthesis is compo
-
sed of a cementless titanium stem and a 15º angulated neck. The gender distribution was 10 men and 13 women, ave
-
rage age 54 years. The mean follow-up was 70 months (48-93 months). The main etiology was a radial head fracture
with elbow instability. Clinical evaluation was performed using the Mayo Elbow Performance Score (MEPS). Was
assessed radiographically joint congruity, the size of the prosthesis, periprosthetic radiolucency, heterotopic ossifica
-
tion and osteoarthritis. At follow-up, the MEPS average was 82/100, with 84% of good and excellent results. Elbow
flexion averaged 130º, extension -30º, pronation 76º and supination 77º. Elbow stability was good in all the cases, and
no proximal migration of the radius occurred. Asymptomatic bone lucencies were found in five cases around the
stem. Complications included paresis of the posterior interosseous nerve with functional recovery after 11 weeks, 2
patients had "overstuffing" associated with posterior subluxation and they need to perform excision of the head and
one heterotopic ossification with articular impact on balance that needs two surgeries, all of them with acceptable
clinical results. The preliminary results are encouragin
On environment difficulty and discriminating power
The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-014-9257-1This paper presents a way to estimate the difficulty and discriminating power of
any task instance. We focus on a very general setting for tasks: interactive (possibly multiagent)
environments where an agent acts upon observations and rewards. Instead of analysing
the complexity of the environment, the state space or the actions that are performed by the
agent, we analyse the performance of a population of agent policies against the task, leading
to a distribution that is examined in terms of policy complexity. This distribution is then
sliced by the algorithmic complexity of the policy and analysed through several diagrams
and indicators. The notion of environment response curve is also introduced, by inverting the
performance results into an ability scale. We apply all these concepts, diagrams and indicators
to two illustrative problems: a class of agent-populated elementary cellular automata, showing
how the difficulty and discriminating power may vary for several environments, and a multiagent
system, where agents can become predators or preys, and may need to coordinate.
Finally, we discuss how these tools can be applied to characterise (interactive) tasks and
(multi-agent) environments. These characterisations can then be used to get more insight
about agent performance and to facilitate the development of adaptive tests for the evaluation
of agent abilities.I thank the reviewers for their comments, especially those aiming at a clearer connection with the field of multi-agent systems and the suggestion of better approximations for the calculation of the response curves. The implementation of the elementary cellular automata used in the environments is based on the library 'CellularAutomaton' by John Hughes for R [58]. I am grateful to Fernando Soler-Toscano for letting me know about their work [65] on the complexity of 2D objects generated by elementary cellular automata. I would also like to thank David L. Dowe for his comments on a previous version of this paper. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).José Hernández-Orallo (2015). On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems. 29(3):402-454. https://doi.org/10.1007/s10458-014-9257-1S402454293Anderson, J., Baltes, J., & Cheng, C. T. (2011). Robotics competitions as benchmarks for ai research. The Knowledge Engineering Review, 26(01), 11–17.Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In Proceedings of the National Conference on Artificial Intelligence (pp. 119–125). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Antunes, L., Fortnow, L., van Melkebeek, D., & Vinodchandran, N. V. (2006). Computational depth: Concept and applications. Theoretical Computer Science, 354(3), 391–404. Foundations of Computation Theory (FCT 2003), 14th Symposium on Fundamentals of Computation Theory 2003.Arai, K., Kaminka, G. A., Frank, I., & Tanaka-Ishii, K. (2003). Performance competitions as research infrastructure: Large scale comparative studies of multi-agent teams. Autonomous Agents and Multi-Agent Systems, 7(1–2), 121–144.Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Chapter 8 working memory, automaticity, and problem difficulty. In Jamie I.D. Campbell (Ed.), The nature and origins of mathematical skills, volume 91 of advances in psychology (pp. 301–329). North-Holland.Ay, N., Müller, M., & Szkola, A. (2010). Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 56(9), 4593–4607.Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak using Jason. London: Wiley. com.Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S. et al. (2000). Decision-theoretic, high-level agent programming in the situation calculus. In Proceedings of the National Conference on Artificial Intelligence (pp. 355–362). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2), 156–172.Chaitin, G. J. (1977). Algorithmic information theory. IBM Journal of Research and Development, 21, 350–359.Chedid, F. B. (2010). Sophistication and logical depth revisited. In 2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) (pp. 1–4). IEEE.Cheeseman, P., Kanefsky, B. & Taylor, W. M. (1991). Where the really hard problems are. In Proceedings of IJCAI-1991 (pp. 331–337).Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-agent Systems, 16(3), 214–248.Delahaye, J. P. & Zenil, H. (2011). Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1), 63–77Dowe, D. L. (2008). Foreword re C. S. Wallace. Computer Journal, 51(5), 523–560. Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L., & Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Du, D. Z., & Ko, K. I. (2011). Theory of computational complexity (Vol. 58). London: Wiley-Interscience.Elo, A. E. (1978). The rating of chessplayers, past and present (Vol. 3). London: Batsford.Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. London: Lawrence Erlbaum.Fatès, N. & Chevrier, V. (2010). How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1 (pp. 533–540). International Foundation for Autonomous Agents and Multiagent Systems.Ferber, J. & Müller, J. P. (1996). Influences and reaction: A model of situated multiagent systems. In Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72–79).Ferrando, P. J. (2009). Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Applied Psychological Measurement, 33(1), 9–24.Ferrando, P. J. (2012). Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica, 33, 111–139.Gent, I. P., & Walsh, T. (1994). Easy problems are sometimes hard. Artificial Intelligence, 70(1), 335–345.Gershenson, C. & Fernandez, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.Gruner, S. (2010). Mobile agent systems and cellular automata. Autonomous Agents and Multi-agent Systems, 20(2), 198–233.Hardman, D. K., & Payne, S. J. (1995). Problem difficulty and response format in syllogistic reasoning. The Quarterly Journal of Experimental Psychology, 48(4), 945–975.He, J., Reeves, C., Witt, C., & Yao, X. (2007). A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evolutionary Computation, 15(4), 435–443.Hernández-Orallo, J. (2000). Beyond the turing test. Journal of Logic Language & Information, 9(4), 447–466.Hernández-Orallo, J. (2000). On the computational measurement of intelligence factors. In A. Meystel (Ed.), Performance metrics for intelligent systems workshop (pp. 1–8). Gaithersburg, MD: National Institute of Standards and Technology.Hernández-Orallo, J. (2000). Thesis: Computational measures of information gain and reinforcement in inference processes. AI Communications, 13(1), 49–50.Hernández-Orallo, J. (2010). A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In M. Hutter et al. (Ed.), 3rd International Conference on Artificial General Intelligence (pp. 182–183). Atlantis Press Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf .Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.Hernández-Orallo, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Insa-Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 82–91). Berlin: Springer.Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2014). Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research, 27, 50–74.Hernández-Orallo, J., Insa, J., Dowe, D. L. & Hibbard, B. (2012). Turing tests with turing machines. In A. Voronkov (Ed.), The Alan Turing Centenary Conference, Turing-100, Manchester, 2012, volume 10 of EPiC Series (pp. 140–156).Hernández-Orallo, J. & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of International Symposium of Engineering of Intelligent Systems (EIS’98) (pp. 146–163). ICSC Press.Hibbard, B. (2009). Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence, 1(1), 54–61.Hoos, H. H. (1999). Sat-encodings, search space structure, and local search performance. In 1999 International Joint Conference on Artificial Intelligence (Vol. 16, pp. 296–303).Insa-Cabrera, J., Benacloch-Ayuso, J. L., & Hernández-Orallo, J. (2012). On measuring social intelligence: Experiments on competition and cooperation. In J. Bach, B. Goertzel, & M. Iklé (Eds.), AGI, volume 7716 of lecture notes in computer science (pp. 126–135). Berlin: Springer.Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011). Comparing humans and AI agents. In J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 122–132). Berlin: Springer.Knuth, D. E. (1973). Sorting and searching, volume 3 of the art of computer programming. Reading, MA: Addison-Wesley.Kotovsky, K., & Simon, H. A. (1990). What makes some problems really hard: Explorations in the problem space of difficulty. Cognitive Psychology, 22(2), 143–183.Legg, S. (2008). Machine super intelligence. PhD thesis, Department of Informatics, University of Lugano, June 2008.Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Leonetti, M. & Iocchi, L. (2010). Improving the performance of complex agent plans through reinforcement learning. In Proceedings of the 2010 International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 723–730). International Foundation for Autonomous Agents and Multiagent Systems.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Levin, L. A. (1986). Average case complete problems. SIAM Journal on Computing, 15, 285.Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). Berlin: Springer.Low, C. K., Chen, T. Y., & Rónnquist, R. (1999). Automated test case generation for bdi agents. Autonomous Agents and Multi-agent Systems, 2(4), 311–332.Madden, M. G., & Howley, T. (2004). Transfer of experience between reinforcement learning environments with progressive difficulty. Artificial Intelligence Review, 21(3), 375–398.Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300.Michel, F. (2004). Formalisme, outils et éléments méthodologiques pour la modélisation et la simulation multi-agents. PhD thesis, Université des sciences et techniques du Languedoc, Montpellier.Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.Orponen, P., Ko, K. I., Schöning, U., & Watanabe, O. (1994). Instance complexity. Journal of the ACM (JACM), 41(1), 96–121.Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns. Psychological Review, 70(6), 534.Team, R., et al. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Whiteson, S., Tanner, B., & White, A. (2010). The reinforcement learning competitions. The AI Magazine, 31(2), 81–94.Wiering, M., & van Otterlo, M. (Eds.). (2012). Reinforcement learning: State-of-the-art. Berlin: Springer.Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Zatuchna, Z., & Bagnall, A. (2009). Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior, 17(1), 28–57.Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1–28.Zenil, H. (2011). Une approche expérimentale à la théorie algorithmique de la complexité. PhD thesis, Dissertation in fulfilment of the degree of Doctor in Computer Science, Université de Lille.Zenil, H., Soler-Toscano, F., Delahaye, J. P. & Gauvrit, N. (2012). Two-dimensional kolmogorov complexity and validation of the coding theorem method by compressibility. arXiv, preprint arXiv:1212.6745
Vástagos monobloque de recubrimiento completo en cirugía de revisión femoral. Resultados a largo plazo de 80 casos.
Bone stock lost and anatomical changes in the proximal femur make femoral revision surgery a complex procedure where the implant chooses will be essential. With the aim of evaluating the clinical and radiological results of the fully coated monoblock stems, we retrospectively studied 80 consecutive cases of femoral revision surgery operated by our hip team. The mean follow-up was 8.6 years. The average score on the Harris Hip Score was 81,2 points. We achieved better results in patients with less bone defects (Paprosky I, II and IIIA) in contrast to those with Paprosky type IIIB defects (p=0.005), in patients with a single previous surgery (p=0.031), in patients under 65 years (p=0.009) and in those who did not suffer complications (p=0.024). The survival rate was 96.1% at 10 years if we consider as failure the removal of the stem due to aseptic loosening and 89.9% if we consider revision of the stem as a failure due to any cause. After the results obtained, we think that fully coated stems provide a solid and stable fixation in femoral revision surgery. However, worst results obtained in patients with bigger bone defects make other options to be considered
Infección protésica de cadera : recambio en dos tiempos en una serie de 50 casos
Chronic infection in hip replacement is an important complication with a complex treatment, that is solved by adequate antibiotic therapy together with single-stage exchange or two-stage exchange. We present a descriptiveand retrospective study of a series of 50 consecutive patients operated on in our center with a diagnosis of chronic infection of the hip prosthesis between 2007 and 2018 with a two-stage exchange.At a mean follow-up of 52 months, the overall implant survival was 89%, with a 91% infection cure rate. The most frequent microorganism isolated was Staphylococcus epidermidis. The mean score achieved on the HHS was 82,4 points and 1.67 points on the visual analogue scale. We obtained better functional results (p=0,021) in those patients who had a preformed antibiotic-loaded spacer in the first surgical stage.As complications, we recorded four cases of prosthetic reinfection (8,7%), three cases of dislocation (6,5%), and one case of postsurgical hematoma (4,6%).No case of neurovascular injury or component loosening was recorded.According to the showed results, we consider that two-stage revision procedure, although it is a demanding surgery, is an effective method for the treatment of periprosthetic hip infection, with high implant survival and erradication of the infection
Choque extraarticular de cadera secundario a consolidación viciosa tras fractura-avulsión de la espina ilíaca antero inferior : a propósito de un caso
The anterior inferior iliac spine (AIIS) avulsion fractures are uncommon, caused by a sudden contraction of the rectus femoris muscle with hyperextension of the hip and knee flexion. We present the clinical case of a 32-year-old mansuffering from pain in his right hip for several years with a history of a AIIS avulsion fracture in his childhood. He presented pain with flexion and internal rotation of the right hip. Physical examination and imaging tests revealed an extra-articular hip impingement secondary to a malunited fracture of AIIS. The patient underwent surgery performing AIIS osteoplasty and excision of the ossification by an anterior mini-open approach. After surgery he was able to re-join sports activity. Malunited fracture of AIIS can cause an extra-articular hip impingement in young sports patients. The treatment by surgical excision of the hypertrophic spine through an anterior mini-open approach allows the correction of the deformity and an early reincorporation to sports activities
Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement
The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10462-016-9505-7.The evaluation of artificial intelligence systems and components is crucial for the
progress of the discipline. In this paper we describe and critically assess the different ways
AI systems are evaluated, and the role of components and techniques in these systems. We
first focus on the traditional task-oriented evaluation approach. We identify three kinds of
evaluation: human discrimination, problem benchmarks and peer confrontation. We describe
some of the limitations of the many evaluation schemes and competitions in these three categories,
and follow the progression of some of these tests. We then focus on a less customary
(and challenging) ability-oriented evaluation approach, where a system is characterised by
its (cognitive) abilities, rather than by the tasks it is designed to solve. We discuss several
possibilities: the adaptation of cognitive tests used for humans and animals, the development
of tests derived from algorithmic information theory or more integrated approaches under
the perspective of universal psychometrics. We analyse some evaluation tests from AI that
are better positioned for an ability-oriented evaluation and discuss how their problems and
limitations can possibly be addressed with some of the tools and ideas that appear within
the paper. Finally, we enumerate a series of lessons learnt and generic guidelines to be used
when an AI evaluation scheme is under consideration.I thank the organisers of the AEPIA Summer School On Artificial Intelligence, held in September 2014, for giving me the opportunity to give a lecture on 'AI Evaluation'. This paper was born out of and evolved through that lecture. The information about many benchmarks and competitions discussed in this paper have been contrasted with information from and discussions with many people: M. Bedia, A. Cangelosi, C. Dimitrakakis, I. GarcIa-Varea, Katja Hofmann, W. Langdon, E. Messina, S. Mueller, M. Siebers and C. Soares. Figure 4 is courtesy of F. Martinez-Plumed. Finally, I thank the anonymous reviewers, whose comments have helped to significantly improve the balance and coverage of the paper. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under Grants TIN 2013-45732-C4-1-P, TIN 2015-69175-C4-1-R and by Generalitat Valenciana PROMETEOII2015/013.José Hernández-Orallo (2016). Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement. Artificial Intelligence Review. 1-51. https://doi.org/10.1007/s10462-016-9505-7S151Abel D, Agarwal A, Diaz F, Krishnamurthy A, Schapire RE (2016) Exploratory gradient boosting for reinforcement learning in complex domains. arXiv preprint arXiv:1603.04119Adams S, Arel I, Bach J, Coop R, Furlan R, Goertzel B, Hall JS, Samsonovich A, Scheutz M, Schlesinger M, Shapiro SC, Sowa J (2012) Mapping the landscape of human-level artificial general intelligence. AI Mag 33(1):25–42Adams SS, Banavar G, Campbell M (2016) I-athlon: towards a multi-dimensional Turing test. AI Mag 37(1):78–84Alcalá J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2010) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult Valued Logic Soft Comput 17:255–287Alexander JRM, Smales S (1997) Intelligence, learning and long-term memory. Personal Individ Differ 23(5):815–825Alpcan T, Everitt T, Hutter M (2014) Can we measure the difficulty of an optimization problem? In: IEEE information theory workshop (ITW)Alur R, Bodik R, Juniwal G, Martin MMK, Raghothaman M, Seshia SA, Singh R, Solar-Lezama A, Torlak E, Udupa A (2013) Syntax-guided synthesis. In: Formal methods in computer-aided design (FMCAD), 2013, IEEE, pp 1–17Alvarado N, Adams SS, Burbeck S, Latta C (2002) Beyond the Turing test: performance metrics for evaluating a computer simulation of the human mind. In: Proceedings of the 2nd international conference on development and learning, IEEE, pp 147–152Amigoni F, Bastianelli E, Berghofer J, Bonarini A, Fontana G, Hochgeschwender N, Iocchi L, Kraetzschmar G, Lima P, Matteucci M, Miraldo P, Nardi D, Schiaffonati V (2015) Competitions for benchmarking: task and functionality scoring complete performance assessment. IEEE Robot Autom Mag 22(3):53–61Anderson J, Lebiere C (2003) The Newell test for a theory of cognition. Behav Brain Sci 26(5):587–601Anderson J, Baltes J, Cheng CT (2011) Robotics competitions as benchmarks for AI research. Knowl Eng Rev 26(01):11–17Arel I, Rose DC, Karnowski TP (2010) Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput Intell Mag 5(4):13–18Asada M, Hosoda K, Kuniyoshi Y, Ishiguro H, Inui T, Yoshikawa Y, Ogino M, Yoshida C (2009) Cognitive developmental robotics: a survey. IEEE Trans Auton Ment Dev 1(1):12–34Aziz H, Brill M, Fischer F, Harrenstein P, Lang J, Seedig HG (2015) Possible and necessary winners of partial tournaments. J Artif Intell Res 54:493–534Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/mlBagnall AJ, Zatuchna ZV (2005) On the classification of maze problems. In: Bull L, Kovacs T (eds) Foundations of learning classifier system. Studies in fuzziness and soft computing, vol. 183, Springer, pp 305–316. http://rd.springer.com/chapter/10.1007/11319122_12Baldwin D, Yadav SB (1995) The process of research investigations in artificial intelligence - a unified view. IEEE Trans Syst Man Cybern 25(5):852–861Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: an evaluation platform for general agents. J Artif Intell Res 47:253–279Besold TR (2014) A note on chances and limitations of psychometric ai. In: KI 2014: advances in artificial intelligence. Springer, pp 49–54Biever C (2011) Ultimate IQ: one test to rule them all. New Sci 211(2829, 10 September 2011):42–45Borg M, Johansen SS, Thomsen DL, Kraus M (2012) Practical implementation of a graphics Turing test. In: Advances in visual computing. Springer, pp 305–313Boring EG (1923) Intelligence as the tests test it. New Repub 35–37Bostrom N (2014) Superintelligence: paths, dangers, strategies. Oxford University Press, OxfordBrazdil P, Carrier CG, Soares C, Vilalta R (2008) Metalearning: applications to data mining. Springer, New YorkBringsjord S (2011) Psychometric artificial intelligence. J Exp Theor Artif Intell 23(3):271–277Bringsjord S, Schimanski B (2003) What is artificial intelligence? Psychometric AI as an answer. In: International joint conference on artificial intelligence, pp 887–893Brundage M (2016) Modeling progress in ai. AAAI 2016 Workshop on AI, Ethics, and SocietyBuchanan BG (1988) Artificial intelligence as an experimental science. Springer, New YorkBuhrmester M, Kwang T, Gosling SD (2011) Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data? Perspect Psychol Sci 6(1):3–5Bursztein E, Aigrain J, Moscicki A, Mitchell JC (2014) The end is nigh: generic solving of text-based captchas. In: Proceedings of the 8th USENIX conference on Offensive Technologies, USENIX Association, p 3Campbell M, Hoane AJ, Hsu F (2002) Deep Blue. Artif Intell 134(1–2):57–83Cangelosi A, Schlesinger M, Smith LB (2015) Developmental robotics: from babies to robots. MIT Press, CambridgeCaputo B, Müller H, Martinez-Gomez J, Villegas M, Acar B, Patricia N, Marvasti N, Üsküdarlı S, Paredes R, Cazorla M et al (2014) Imageclef 2014: overview and analysis of the results. In: Information access evaluation. Multilinguality, multimodality, and interaction, Springer, pp 192–211Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER Jr, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: AAAI, vol 5, p 3Carroll JB (1993) Human cognitive abilities: a survey of factor-analytic studies. Cambridge University Press, CambridgeCaruana R (1997) Multitask learning. Mach Learn 28(1):41–75Chaitin GJ (1982) Gödel’s theorem and information. Int J Theor Phys 21(12):941–954Chandrasekaran B (1990) What kind of information processing is intelligence? In: The foundation of artificial intelligence—a sourcebook. Cambridge University Press, pp 14–46Chater N (1999) The search for simplicity: a fundamental cognitive principle? Q J Exp Psychol Sect A 52(2):273–302Chater N, Vitányi P (2003) Simplicity: a unifying principle in cognitive science? Trends Cogn Sci 7(1):19–22Chu Z, Gianvecchio S, Wang H, Jajodia S (2010) Who is tweeting on twitter: human, bot, or cyborg? In: Proceedings of the 26th annual computer security applications conference, ACM, pp 21–30Cochran WG (2007) Sampling techniques. Wiley, New YorkCohen PR, Howe AE (1988) How evaluation guides AI research: the message still counts more than the medium. AI Mag 9(4):35Cohen Y (2013) Testing and cognitive enhancement. Technical repor, National Institute for Testing and Evaluation, Jerusalem, IsraelConrad JG, Zeleznikow J (2013) The significance of evaluation in AI and law: a case study re-examining ICAIL proceedings. In: Proceedings of the 14th international conference on artificial intelligence and law, ACM, pp 186–191Conrad JG, Zeleznikow J (2015) The role of evaluation in ai and law. In: Proceedings of the 15th international conference on artificial intelligence and law, pp 181–186Deary IJ, Der G, Ford G (2001) Reaction times and intelligence differences: a population-based cohort study. Intelligence 29(5):389–399Decker KS, Durfee EH, Lesser VR (1989) Evaluating research in cooperative distributed problem solving. Distrib Artif Intell 2:487–519Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30Detterman DK (2011) A challenge to Watson. Intelligence 39(2–3):77–78Dimitrakakis C (2016) Personal communicationDimitrakakis C, Li G, Tziortziotis N (2014) The reinforcement learning competition 2014. AI Mag 35(3):61–65Dowe DL (2013) Introduction to Ray Solomonoff 85th memorial conference. In: Dowe DL (ed) Algorithmic probability and friends. Bayesian prediction and artificial intelligence, lecture notes in computer science, vol 7070. Springer, Berlin, pp 1–36Dowe DL, Hajek AR (1997) A computational extension to the Turing Test. In: Proceedings of the 4th conference of the Australasian cognitive science society, University of Newcastle, NSW, AustraliaDowe DL, Hajek AR (1998) A non-behavioural, computational extension to the Turing test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106Dowe DL, Hernández-Orallo J (2012) IQ tests are not for machines, yet. Intelligence 40(2):77–81Dowe DL, Hernández-Orallo J (2014) How universal can an intelligence test be? Adapt Behav 22(1):51–69Drummond C (2009) Replicability is not reproducibility: nor is it good science. In: Proceedings of the evaluation methods for machine learning workshop at the 26th ICML, Montreal, CanadaDrummond C, Japkowicz N (2010) Warning: statistical benchmarking is addictive. Kicking the habit in machine learning. J Exp Theor Artif Intell 22(1):67–80Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous control. arXiv preprint arXiv:1604.06778Eden AH, Moor JH, Soraker JH, Steinhart E (2013) Singularity hypotheses: a scientific and philosophical assessment. Springer, New YorkEdmondson W (2012) The intelligence in ETI—what can we know? Acta Astronaut 78:37–42Elo AE (1978) The rating of chessplayers, past and present, vol 3. Batsford, LondonEmbretson SE, Reise SP (2000) Item response theory for psychologists. L. Erlbaum, HillsdaleEvans JM, Messina ER (2001) Performance metrics for intelligent systems. NIST Special Publication SP, pp 101–104Everitt T, Lattimore T, Hutter M (2014) Free lunch for optimisation under the universal distribution. In: 2014 IEEE Congress on evolutionary computation (CEC), IEEE, pp 167–174Falkenauer E (1998) On method overfitting. J Heuristics 4(3):281–287Feldman J (2003) Simplicity and complexity in human concept learning. Gen Psychol 38(1):9–15Ferrando PJ (2009) Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Appl Psychol Meas 33(1):9–24Ferrando PJ (2012) Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica 33:111–139Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recogn Lett 30(1):27–38Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock J, Nyberg E, Prager J et al (2010) Building Watson: an overview of the DeepQA project. AI Mag 31(3):59–79Fogel DB (1991) The evolution of intelligent decision making in gaming. Cybern Syst 22(2):223–236Gaschnig J, Klahr P, Pople H, Shortliffe E, Terry A (1983) Evaluation of expert systems: issues and case studies. Build Exp Syst 1:241–278Geissman JR, Schultz RD (1988) Verification & validation. AI Exp 3(2):26–33Genesereth M, Love N, Pell B (2005) General game playing: overview of the AAAI competition. AI Mag 26(2):62Gerónimo D, López AM (2014) Datasets and benchmarking. In: Vision-based pedestrian protection systems for intelligent vehicles. Springer, pp 87–93Goertzel B, Pennachin C (eds) (2007) Artificial general intelligence. Springer, New YorkGoertzel B, Arel I, Scheutz M (2009) Toward a roadmap for human-level artificial general intelligence: embedding HLAI systems in broad, approachable, physical or virtual contexts. Artif Gen Intell Roadmap InitiatGoldreich O, Vadhan S (2007) Special issue on worst-case versus average-case complexity editors’ foreword. Comput complex 16(4):325–330Gordon BB (2007) Report on panel discussion on (re-)establishing or increasing collaborative links between artificial intelligence and intelligent systems. In: Messina ER, Madhavan R (eds) Proceedings of the 2007 workshop on performance metrics for intelligent systems, pp 302–303Gulwani S, Hernández-Orallo J, Kitzelmann E, Muggleton SH, Schmid U, Zorn B (2015) Inductive programming meets the real world. Commun ACM 58(11):90–99Hand DJ (2004) Measurement theory and practice. A Hodder Arnold Publication, LondonHernández-Orallo J (2000a) Beyond the Turing test. J Logic Lang Inf 9(4):447–466Hernández-Orallo J (2000b) On the computational measurement of intelligence factors. In: Meystel A (ed) Performance metrics for intelligent systems workshop. National Institute of Standards and Technology, Gaithersburg, pp 1–8Hernández-Orallo J (2000c) Thesis: computational measures of information gain and reinforcement in inference processes. AI Commun 13(1):49–50Hernández-Orallo J (2010) A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Artificial general intelligence, 3rd International Conference. Atlantis Press, Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf , pp 182–183Hernández-Orallo J (2014) On environment difficulty and discriminating power. Auton Agents Multi-Agent Syst. 29(3):402–454. doi: 10.1007/s10458-014-9257-1Hernández-Orallo J, Dowe DL (2010) Measuring universal intelligence: towards an anytime intelligence test. Artif Intell 174(18):1508–1539Hernández-Orallo J, Dowe DL (2013) On potential cognitive abilities in the machine kingdom. Minds Mach 23:179–210Hernández-Orallo J, Minaya-Collado N (1998) A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proceedings of international symposium of engineering of intelligent systems (EIS’98), ICSC Press, pp 146–163Hernández-Orallo J, Dowe DL, España-Cubillo S, Hernández-Lloreda MV, Insa-Cabrera J (2011) On more realistic environment distributions for defining, evaluating and developing intelligence. In: Schmidhuber J, Thórisson K, Looks M (eds) Artificial general intelligence, LNAI, vol 6830. Springer, New York, pp 82–91Hernández-Orallo J, Flach P, Ferri C (2012a) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13(1):2813–2869Hernández-Orallo J, Insa-Cabrera J, Dowe DL, Hibbard B (2012b) Turing Tests with Turing machines. In: Voronkov A (ed) Turing-100, EPiC Series, vol 10, pp 140–156Hernández-Orallo J, Dowe DL, Hernández-Lloreda MV (2014) Universal psychometrics: measuring cognitive abilities in the machine kingdom. Cogn Syst Res 27:50–74Hernández-Orallo J, Martínez-Plumed F, Schmid U, Siebers M, Dowe DL (2016) Computer models solving intelligence test problems: progress and implications. Artif Intell 230:74–107Herrmann E, Call J, Hernández-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843):1360–1366Hibbard B (2009) Bias and no free lunch in formal measures of intelligence. J Artif Gen Intell 1(1):54–61Hingston P (2010) A new design for a Turing Test for bots. In: 2010 IEEE symposium on computational intelligence and games (CIG), IEEE, pp 345–350Hingston P (2012) Believable bots: can computers play like people?. Springer, New YorkHo TK, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289–300Hutter M (2007) Universal algorithmic intelligence: a mathematical top → down approach. In: Goertzel B, Pennachin C (eds) Artificial general intelligence, cognitive technologies. Springer, Berlin, pp 227–290Igel C, Toussaint M (2005) A no-free-lunch theorem for non-uniform distributions of target functions. J Math Model Algorithms 3(4):313–322Insa-Cabrera J (2016) Towards a universal test of social intelligence. Ph.D. thesis, Departament de Sistemes Informátics i Computació, UPVInsa-Cabrera J, Dowe DL, España-Cubillo S, Hernández-Lloreda MV, Hernández-Orallo J (2011a) Comparing humans and ai agents. In: Schmidhuber J, Thórisson K, Looks M (eds) Artificial general intelligence, LNAI, vol 6830. Springer, New York, pp 122–132Insa-Cabrera J, Dowe DL, Hernández-Orallo J (2011) Evaluating a reinforcement learning algorithm with a general intelligence test. In: Lozano JA, Gamez JM (eds) Current topics in artificial intelligence. CAEPIA 2011, LNAI series 7023. Springer, New YorkInsa-Cabrera J, Benacloch-Ayuso JL, Hernández-Orallo J (2012) On measuring social intelligence: experiments on competition and cooperation. In: Bach J, Goertzel B, Iklé M (eds) AGI, lecture notes in computer science, vol 7716. Springer, New York, pp 126–135Jacoff A, Messina E, Weiss BA, Tadokoro S, Nakagawa Y (2003) Test arenas and performance metrics for urban search and rescue robots. In: Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 (IROS 2003), IEEE, vol 4, pp 3396–3403Japkowicz N, Shah M (2011) Evaluating learning algorithms. Cambridge University Press, CambridgeJiang J (2008) A literature survey on domain adaptation of statistical classifiers. http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/surveyJohnson M, Hofmann K, Hutton T, Bignell D (2016) The Malmo platform for artificial intelligence experimentation. In: International joint conference on artificial intelligence (IJCAI)Keith TZ, Reynolds MR (2010) Cattell–Horn–Carroll abilities and cognitive tests: what we’ve learned from 20 years of research. Psychol Schools 47(7):635–650Ketter W, Symeonidis A (2012) Competitive benchmarking: lessons learned from the trading agent competition. AI Mag 33(2):103Khreich W, Granger E, Miri A, Sabourin R (2012) A survey of techniques for incremental learning of HMM parameters. Inf Sci 197:105–130Kim JH (2004) Soccer robotics, vol 11. Springer, New YorkKitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E (1997) Robocup: the robot world cup initiative. In: Proceedings of the first international conference on autonomous agents, ACM, pp 340–347Kleiner K (2011) Who are you calling bird-brained? An attempt is being made to devise a universal intelligence test. Economist 398(8723, 5 March 2011):82Knuth DE (1973) Sorting and searching, volume 3 of the art of computer programming. Addison-Wesley, ReadingKoza JR (2010) Human-competitive results produced by genetic programming. Genet Program Evolvable Mach 11(3–4):251–284Krueger J, Osherson D (1980) On the psychology of structural simplicity. In: Jusczyk PW, Klein RM (eds) The nature of thought: essays in honor of D. O. Hebb. Psychology Press, London, pp 187–205Langford J (2005) Clever methods of overfitting. Machine Learning (Theory). http://hunch.netLangley P (1987) Research papers in machine learning. Mach Learn 2(3):195–198Langley P (2011) The changing science of machine learning. Mach Learn 82(3):275–279Langley P (2012) The cognitive systems paradigm. Adv Cogn Syst 1:3–13Lattimore T, Hutter M (2013) No free lunch versus Occam’s razor in supervised learning. Algorithmic Probability and Friends. Springer, Bayesian Prediction and Artificial Intelligence, pp 223–235Leeuwenberg ELJ, Van Der Helm PA (2012) Structural information theory: the simplicity of visual form. Cambridge University Press, CambridgeLegg S, Hutter M (2007a) Tests of machine intelligence. In: Lungarella M, Iida F, Bongard J, Pfeifer R (eds) 50 Years of Artificial Intelligence, Lecture Notes in Computer Science, vol 4850, Springer Berlin Heidelberg, pp 232–242. doi: 10.1007/978-3-540-77296-5_22Legg S, Hutter M (2007b) Universal intelligence: a definition of machine intelligence. Minds Mach 17(4):391–444Legg S, Veness J (2013) An approximation of the universal intelligence measure. Algorithmic Probability and Friends. Springer, Bayesian Prediction and Artificial Intelligence, pp 236–249Levesque HJ (2014) On our best behaviour. Artif Intell 212:27–35Levesque HJ, Davis E, Morgenstern L (2012) The winog
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …