19,922 research outputs found

    Littlest Inverse Seesaw Model

    Full text link
    We propose a minimal predictive inverse seesaw model based on two right-handed neutrinos and two additional singlets, leading to the same low energy neutrino mass matrix as in the Littlest Seesaw (LS) (type I) model. In order to implement such a Littlest Inverse Seesaw (LIS) model, we have used an S4S_{4} family symmetry, together with other various symmetries, flavons and driving fields. The resulting LIS model leads to an excellent fit to the low energy neutrino parameters, including the prediction of a normal neutrino mass ordering, exactly as in the usual LS model. However, unlike the LS model, the LIS model allows charged lepton flavour violating (CLFV) processes and lepton conversion in nuclei within reach of the forthcoming experiments.Comment: 17 pages, 9 figures. Published versio

    Approximated integrability of the Dicke model

    Full text link
    A very approximate second integral of motion of the Dicke model is identified within a broad region above the ground state, and for a wide range of values of the external parameters. This second integral, obtained from a Born Oppenheimer approximation, classifies the whole regular part of the spectrum in bands labelled by its corresponding eigenvalues. Results obtained from this approximation are compared with exact numerical diagonalization for finite systems in the superradiant phase, obtaining a remarkable accord. The region of validity of our approach in the parameter space, which includes the resonant case, is unveiled. The energy range of validity goes from the ground state up to a certain upper energy where chaos sets in, and extends far beyond the range of applicability of a simple harmonic approximation around the minimal energy configuration. The upper energy validity limit increases for larger values of the coupling constant and the ratio between the level splitting and the frequency of the field. These results show that the Dicke model behaves like a two-degree of freedom integrable model for a wide range of energies and values of the external parameters.Comment: 6 pages, 3 figures. Second version with added text, references and some new figure

    Guaranteed emergence of genuine entanglement in 3-qubit evolving systems

    Full text link
    Multipartite entanglement has been shown to be of particular relevance for a better understanding and exploitation of the dynamics and flow of entanglement in multiparty systems. This calls for analysis aimed at identifying the appropriate processes that guarantee the emergence of multipartite entanglement in a wide range of scenarios. Here we carry on such analysis considering a system of two initially entangled qubits, one of which is let to interact with a third qubit according to an arbitrary unitary evolution. We establish necessary and sufficient conditions on the corresponding Kraus operators, to discern whether the evolved state pertains to either one of the classes of 3-qubit pure states that exhibit some kind of entanglement, namely biseparable, W-, and GHZ- genuine entangled classes. Our results provide a classification of the Kraus operators according to their capacity of producing 3-qubit entanglement, and pave the way for extending the analysis to larger systems and determining the particular interactions that must be implemented in order to create, enhance and distribute entanglement in a specific manner.Comment: Two new subsections included. Accepted for publication in The European Physical Journal
    • …
    corecore