4 research outputs found

    Neural networks in evolutionary dynamic constrained optimization: computational cost and benefits

    Get PDF
    Neural networks (NN) have been recently applied together with evolutionary algorithms (EAs) to solve dynamic optimization problems. The applied NN estimates the position of the next optimum based on the previous time best solutions. After detecting a change, the predicted solution can be employed to move the EA’s population to a promising region of the solution space in order to accelerate convergence and improve accuracy in tracking the optimum. While previous works show improvement of the results, they neglect the overhead created by NN. In this work, we reflect the time spent for training NN in the optimization time and compare the results with a baseline EA. We explore if by considering the generated overhead, NN is still able to improve the results, and under which conditions is able to do so. The main difficulties to train the NN are: 1) to get enough samples to generalize predictions for new data, and 2) to obtain reliable samples. As NN needs to collect data at each time step, if the time horizon is short, we will not be able to collect enough samples to train the NN. To alleviate this, we propose to consider more individuals on each time to speed up sample collection in shorter time steps. In environments with high frequency of changes, the solutions produced by EA are likely to be far from the real optimum. Using unreliable train data for the NN will, in consequence, produce unreliable predictions. Also, as the time spent for NN stays fixed regardless of the frequency, a higher frequency of change will mean a higher produced overhead by the NN in proportion to the EA. In general, after considering the generated overhead, we conclude that NN is not suitable in environments with high frequency of changes and/or short time horizons. However, it can be promising for the low frequency of changes, and especially for the environments that changes have a pattern.Maryam Hasani-Shoreh and Renato Hermoza Aragonés and Frank Neuman

    Region proposals for saliency map refinement for weakly-supervised disease localisation and classification

    Get PDF
    First Online: 29 September 2020The deployment of automated systems to diagnose diseases from medical images is challenged by the requirement to localise the diagnosed diseases to justify or explain the classification decision. This requirement is hard to fulfil because most of the training sets available to develop these systems only contain global annotations, making the localisation of diseases a weakly supervised approach. The main methods designed for weakly supervised disease classification and localisation rely on saliency or attention maps that are not specifically trained for localisation, or on region proposals that can not be refined to produce accurate detections. In this paper, we introduce a new model that combines region proposal and saliency detection to overcome both limitations for weakly supervised disease classification and localisation. Using the ChestX-ray14 data set, we show that our proposed model establishes the new state-of-the-art for weakly-supervised disease diagnosis and localisation. We make our code available at https://github.com/renato145/RpSalWeaklyDet.Renato Hermoza, Gabriel Maicas, Jacinto C. Nascimento, Gustavo Carneir

    Using neural networks and diversifying differential evolution for dynamic optimisation

    No full text
    Dynamic optimisation occurs in a variety of realworld problems. To tackle these problems, evolutionary algorithms have been extensively used due to their effectiveness and minimum design effort. However, for dynamic problems, extra mechanisms are required on top of standard evolutionary algorithms. Among them, diversity mechanisms have proven to be competitive in handling dynamism, and recently, the use of neural networks have become popular for this purpose. Considering the complexity of using neural networks in the process compared to simple diversity mechanisms, we investigate whether they are competitive and the possibility of integrating them to improve the results. However, for a fair comparison, we need to consider the same time budget for each algorithm. Thus instead of the usual number of fitness evaluations as the measure for the available time between changes, we use wall clock timing. The results show the significance of the improvement when integrating the neural network and diversity mechanisms depends to the type and the frequency of changes. Moreover, we observe that for differential evolution, having a proper diversity in population when using neural network plays a key role in the neural network’s ability to improve the results.Maryam Hasani Shoreh, Renato Hermoza Aragonés, Frank Neuman

    Post-hoc overall survival time prediction from brain MRI

    No full text
    Overall survival (OS) time prediction is one of the most common estimates of the prognosis of gliomas and is used to design an appropriate treatment planning. State-of-the-art (SOTA) methods for OS time prediction follow a pre-hoc approach that require computing the segmentation map of the glioma tumor sub-regions (necrotic, edema tumor, enhancing tumor) for estimating OS time. However, the training of the segmentation methods require ground truth segmentation labels which are tedious and expensive to obtain. Given that most of the large-scale data sets available from hospitals are unlikely to contain such precise segmentation, those SOTA methods have limited applicability. In this paper, we introduce a new post-hoc method for OS time prediction that does not require segmentation map annotation for training. Our model uses medical image and patient demographics (represented by age) as inputs to estimate the OS time and to estimate a saliency map that localizes the tumor as a way to explain the OS time prediction in a post-hoc manner. It is worth emphasizing that although our model can localize tumors, it uses only the ground truth OS time as training signal, i.e., no segmentation labels are needed. We evaluate our post-hoc method on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019 data set and show that it achieves competitive results compared to pre-hoc methods with the advantage of not requiring segmentation labels for training. We make our code available at https://github.com/renato145/posthocOS.Renato Hermoza, Gabriel Maicas, Jacinto C. Nascimento, Gustavo Carneir
    corecore