87 research outputs found

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    How to generate all possible rational Wilf-Zeilberger pairs?

    Full text link
    A Wilf--Zeilberger pair (F,G)(F, G) in the discrete case satisfies the equation F(n+1,k)F(n,k)=G(n,k+1)G(n,k) F(n+1, k) - F(n, k) = G(n, k+1) - G(n, k). We present a structural description of all possible rational Wilf--Zeilberger pairs and their continuous and mixed analogues.Comment: 17 pages, add the notion of pseudo residues in the differential case, and some related papers in the reference, ACMES special volume in the Fields Institute Communications series, 201
    corecore