1,849 research outputs found

    Metastable states, the adiabatic theorem and parity violating geometric phases II

    Full text link
    We discuss and calculate parity conserving (PC) and parity violating (PV) geometric phases for the metastable 2S states of hydrogen and deuterium. The atoms are supposed to be subjected to slowly varying electric and magnetic fields which act as external parameters for the atoms. Geometric flux density fields are introduced which allow for an easy overview how to choose the paths in parameter space in order to obtain only PC or only PV geometric phases. The PV phases are calculated in the Standard Model of particle physics. Even if numerically they come out small they have interest of principle as a new manifestation of parity violation in atomic physics.Comment: 63 pages, 8 figures, 10 table

    A search for variable white dwarfs in large area time domain surveys: a pilot study in SDSS Stripe 82

    Get PDF
    We present a method to reliably select variable white dwarfs from large area time domain surveys and apply this method in a pilot study to search for pulsating white dwarfs in the Sloan Digital Sky Survey Stripe 82. From a sample 400 high-confidence white dwarf candidates, we identify 24 which show significant variability in their multi-epoch Stripe 82 data. Using colours, we further selected a sample of pulsating white dwarf (ZZ Ceti) candidates and obtained high cadence follow up for six targets. We confirm five of our candidates as cool ZZ Cetis, three of which are new discoveries. Among our 24 candidates we also identify: one eclipsing binary, two magnetic white dwarfs and one pulsating PG1159 star. Finally we discuss the possible causes for the variability detected in the remaining targets. Even with sparse multi-epoch data over the limited area of Stripe 82, we demonstrate that our selection method can successfully identify various types of variable white dwarfs and efficiently select high-confidence ZZ Ceti candidates.Comment: Accepted for publication in MNRAS, 14 pages, 11 figure

    Efficient Implementation of Elastohydrodynamics via Integral Operators

    Get PDF
    The dynamics of geometrically non-linear flexible filaments play an important role in a host of biological processes, from flagella-driven cell transport to the polymeric structure of complex fluids. Such problems have historically been computationally expensive due to numerical stiffness associated with the inextensibility constraint, as well as the often non-trivial boundary conditions on the governing high-order PDEs. Formulating the problem for the evolving shape of a filament via an integral equation in the tangent angle has recently been found to greatly alleviate this numerical stiffness. The contribution of the present manuscript is to enable the simulation of non-local interactions of multiple filaments in a computationally efficient manner using the method of regularized stokeslets within this framework. The proposed method is benchmarked against a non-local bead and link model, and recent code utilizing a local drag velocity law. Systems of multiple filaments (1) in a background fluid flow, (2) under a constant body force, and (3) undergoing active self-motility are modeled efficiently. Buckling instabilities are analyzed by examining the evolving filament curvature, as well as by coarse-graining the body frame tangent angles using a Chebyshev approximation for various choices of the relevant non-dimensional parameters. From these experiments, insight is gained into how filament-filament interactions can promote buckling, and further reveal the complex fluid dynamics resulting from arrays of these interacting fibers. By examining active moment-driven filaments, we investigate the speed of worm- and sperm-like swimmers for different governing parameters. The MATLAB(R) implementation is made available as an open-source library, enabling flexible extension for alternate discretizations and different surrounding flows.Comment: 37 pages, 17 figure

    When flux standards go wild: white dwarfs in the age of Kepler

    Get PDF
    White dwarf stars have been used as flux standards for decades, thanks to their staid simplicity. We have empirically tested their photometric stability by analyzing the light curves of 398 high-probability candidates and spectroscopically confirmed white dwarfs observed during the original Kepler mission and later with K2 Campaigns 0-8. We find that the vast majority (>97 per cent) of non-pulsating and apparently isolated white dwarfs are stable to better than 1 per cent in the Kepler bandpass on 1-hr to 10-d timescales, confirming that these stellar remnants are useful flux standards. From the cases that do exhibit significant variability, we caution that binarity, magnetism, and pulsations are three important attributes to rule out when establishing white dwarfs as flux standards, especially those hotter than 30,000 K.Comment: Accepted for publication in MNRAS; 7 pages, 4 figures, 2 table
    • …
    corecore