245 research outputs found
Single electron quantum tomography in quantum Hall edge channels
We propose a quantum tomography protocol to measure single electron coherence
in quantum Hall edge channels and therefore access for the first time the wave
function of single electron excitations propagating in ballistic quantum
conductors. Its implementation would open the way to quantitative studies of
single electron decoherence and would provide a quantitative tool for analyzing
single to few electron sources. We show how this protocol could be implemented
using ultrahigh sensitivity noise measurement schemes.Comment: Version 3: long version (7 figures): corrections performed and
references have been added. Figures reprocessed for better readabilit
Quantum Acoustics with Surface Acoustic Waves
It has recently been demonstrated that surface acoustic waves (SAWs) can
interact with superconducting qubits at the quantum level. SAW resonators in
the GHz frequency range have also been found to have low loss at temperatures
compatible with superconducting quantum circuits. These advances open up new
possibilities to use the phonon degree of freedom to carry quantum information.
In this paper, we give a description of the basic SAW components needed to
develop quantum circuits, where propagating or localized SAW-phonons are used
both to study basic physics and to manipulate quantum information. Using
phonons instead of photons offers new possibilities which make these quantum
acoustic circuits very interesting. We discuss general considerations for SAW
experiments at the quantum level and describe experiments both with SAW
resonators and with interaction between SAWs and a qubit. We also discuss
several potential future developments.Comment: 14 pages, 12 figure
Ultrafast pulse shaping modulates perceived visual brightness in living animals
Vision is usually assumed to be sensitive to the light intensity and spectrum but not to its spectral phase. However, experiments performed on retinal proteins in solution showed that the first step of vision consists in an ultrafast photoisomerization that can be coherently controlled by shaping the phase of femtosecond laser pulses, especially in the multiphoton interaction regime. The link between these experiments in solution and the biological process allowing vision was not demonstrated. Here, we measure the electric signals fired from the retina of living mice upon femtosecond multipulse and single-pulse light stimulation. Our results show that the electrophysiological signaling is sensitive to the manipulation of the light excitation on a femtosecond time scale. The mechanism relies on multiple interactions with the light pulses close to the conical intersection, like pump-dump (photoisomerization interruption) and pump-repump (reverse isomerization) processes. This interpretation is supported both experimentally and by dynamics simulations
Electrons surfing on a sound wave as a platform for quantum optics with flying electrons
Electrons in a metal are indistinguishable particles that strongly interact
with other electrons and their environment. Isolating and detecting a single
flying electron after propagation to perform quantum optics like experiments at
the single electron level is therefore a challenging task. Up to date, only few
experiments have been performed in a high mobility two-dimensional electron gas
where the electron propagates almost ballistically. Flying electrons were
detected via the current generated by an ensemble of electrons and electron
correlations were encrypted in the current noise. Here we demonstrate the
experimental realisation of high efficiency single electron source and single
electron detector for a quantum medium where a single electron is propagating
isolated from the other electrons through a one-dimensional channel. The moving
potential is excited by a surface acoustic wave, which carries the single
electron along the 1D-channel at a speed of 3\mum/ns. When such a quantum
channel is placed between two quantum dots, a single electron can be
transported from one quantum dot to the other, which is several micrometres
apart, with a quantum efficiency of emission and detection of 96% and 92%,
respectively. Furthermore, the transfer of the electron can be triggered on a
timescale shorter than the coherence time T2* of GaAs spin qubits6. Our work
opens new avenues to study the teleportation of a single electron spin and the
distant interaction between spatially separated qubits in a condensed matter
system.Comment: Total 25 pages. 12 pages main text, 4 figures, 5 pages supplementary
materia
Protecting against Multidimensional Linear and Truncated Differential Cryptanalysis by Decorrelation
The decorrelation theory provides a different point of view on the security of block cipher primitives. Results on some statistical attacks obtained in this context can support or provide new insight on the security of symmetric cryptographic primitives. In this paper, we study, for the first time, the multidimensional linear attacks as well as the truncated differential attacks in this context. We show that the cipher should be decorrelated of order two to be resistant against some multidimensional linear and truncated differential attacks. Previous results obtained with this theory for linear, differential, differential-linear and boomerang attacks are also resumed and improved in this paper
Fourier synthesis of radio frequency nanomechanical pulses with different shapes
The concept of Fourier synthesis is heavily employed in both consumer
electronic products and fundamental research. In the latter, pulse shaping is
key to dynamically initialize, probe and manipulate the state of classical or
quantum systems. In nuclear magnetic resonance, for instance, shaped pulses
have a long-standing tradition and the underlying fundamental concepts have
subsequently been successfully extended to optical frequencies and even to
implement quantum gate operations. Transferring these paradigms to
nanomechanical systems requires tailored nanomechanical waveforms. Here, we
report on an additive Fourier synthesizer for nanomechanical waveforms based on
monochromatic surface acoustic waves. As a proof of concept, we electrically
synthesize four different elementary nanomechanical waveforms from a
fundamental surface acoustic wave at MHz using a superposition
of up to three discrete harmonics . We employ these shaped pulses to
interact with an individual sensor quantum dot and detect their deliberately
and temporally modulated strain component via the opto-mechanical quantum dot
response. Importantly, and in contrast to the direct mechanical actuation by
bulk piezoactuators, surface acoustic waves provide much higher frequencies (>
20 GHz) to resonantly drive mechanical motion. Thus, our technique uniquely
allows coherent mechanical control of localized vibronic modes of
optomechanical crystals, even in the quantum limit when cooled to the
vibrational ground state.Comment: 18 pages - final manuscript and supporting materia
Forty years on: Uta Frith's contribution to research on autism and dyslexia, 1966â2006
Uta Frith has made a major contribution to our understanding of developmental disorders, especially autism and dyslexia. She has studied the cognitive and neurobiological bases of both disorders and demonstrated distinctive impairments in social cognition and central coherence in autism, and in phonological processing in dyslexia. In this enterprise she has encouraged psychologists to work in a theoretical framework that distinguishes between observed behaviour and the underlying cognitive and neurobiological processes that mediate that behaviour
Recommended from our members
When prototypes are not best: Judgments made by children with autism
The current study used a factorial comparison experimental design to investigate conflicting findings on prototype effects shown by children with autism (Klinger & Dawson, 2001; Molesworth, Bowler, & Hampton, 2005). The aim was to see whether children with high âfunctioning autism could demonstrate prototype effects via categorization responses and whether failure to do so was related to difficulty understanding ambiguous task demands. Two thirds of the autism group did show an effect. The remainder, a sub-group defined by performance on a control task, did not. The discussion focuses on the influence of heterogeneity within the autism group and the ability to resolve ambiguity on task performance. Finally, an alternative experimental design is recommended for further research into these issues
- âŠ