137 research outputs found

    Medium frequency (800-1600Hz) geoacoustic inversions with drifting sparse arrays during the MREA BP07 experiment

    Get PDF
    In order to evaluate properly the acoustic propagation characteristics in shallow water environments, it is well established that appropriate knowledge of the acoustic properties of the seabottom is required. In the last decade, full-field geoacoustic inversion techniques have been demonstrated to provide adequate methodologies to assess those properties. However, several of the developed techniques may suffer a lack of adequacy to the design of low-frequency active sonar systems (LFAS) for which the assessment of seabottom characteristics are drawn. For instance most matched-field inversion techniques demonstrated so far use acoustical signals at much lower frequencies than those of the sonar (few tens to hundreds Hertz to be compared to the 1-2 kHz range of standard LFAS). Furthermore, some of the techniques may be difficult to be handled in an â€oeoperationally relevant context― since they are based on relatively complex designed systems such as highly instrumented vertical line arrays spanning the whole water column. In this paper, we investigate the potentialities of medium frequency acoustical signals (800-1600 Hz) received at several ranges (from 1 km to 10 km) along a field of drifting sparse arrays eventually reduced to a couple of hydrophones or even a single one for spatial coherent geoacoustic inversion purposes. The experimental datasets of the Maritime Rapid Environmental Assessment BP’07 seatrials South of Elba Island in the Mediterranean Sea are used to support this study.FC

    Integrated scheme of rapid environmental assessment for shallow water acoustics

    Get PDF
    Predicting sound propagation in shallow or very shallow water environments requires that the frequency-dependent acoustic properties be assessed for all components of the waveguide, i.e., the water column, sea bottom and sea surface interface. During the Maritime Rapid Environmental Assessment MREA?BP'07 sea trial in April-May 2007, south of Elba Island in the Mediterranean Sea, an integrated MREA scheme has been implemented to provide a full 4D (3D+T) environmental picture that is directly exploitable by acoustic propagation models. Based on a joint multi-disciplinary effort, several standard and advanced techniques of environmental characterization covering the fields of underwater acoustics, physical oceanography and geophysics have been combined within a coherent scheme of data acquisition, processing and assimilation. The paper presents the whole architecture of the implemented scheme. Based on a preliminary analysis of MREA?BP'07 data, advantages and drawbacks of the approach will be discussed. Ways ahead for further improvement and perspectives are finally drawn

    Geoacoustic inversion in the frequency range 0.8-1.6 kHz with drifting sparse arrays during MREA/BP'07 experiment

    Get PDF
    In order to evaluate properly the acoustic propagation characteristics in shallow water environments, it is well established that appropriate knowledge of the acoustic properties of the seabottom is required. In the last decade, full-field geoacoustic inversion techniques have been demonstrated to provide adequate methodologies to assess those properties. However, several of the developed techniques may suffer a lack of adequacy to the design of low-frequency active sonar systems (LFAS) for which the assessment of seabottom characteristics are drawn. For instance most matched-field inversion techniques demonstrated so far use acoustical signals at much lower frequencies than those of the sonar. Furthermore, some of the techniques may be difficult to be handled in an "operationally relevant context" since they are based on relatively complex designed systems such as highly instrumented vertical line arrays spanning the whole water column. In this paper, we investigate the potential of medium-frequency acoustical signals (0.8-1.6 kHz) received at several ranges on a field of drifting sparse arrays, eventually reduced to a couple of hydrophones, for spatially-coherent geoacoustic inversion purposes. The experimental datasets of the Maritime Rapid Environmental Assessment MREA/BP'07 sea trial south of Elba Island in the Mediterranean Sea are used to support this study

    Acoutic-oceanographic buoy - An easily deployable, reconfigurable, and multifunctional acoustic-oceanographic system

    Get PDF
    The concept of an easy to use and easy to deploy ocean acoustic tomographic (OAT) system is presented. The system is composed of a network of buoys and a data inversion online processor. This study concerns the individual node of that network—the acoustic-oceanographic buoy (AOB)—the data inversion technique and the testing of the system at sea. The AOB is a lightweight surface buoy with a vertical array of acoustic and temperature sensors to be hand deployed in a free-drifting configuration from a small boat. The data are locally stored and transmitted online to a remote station for processing and monitoring. Data inversion is based on a broadband matched-field tomography technique where known and unknown parameters are simultaneously searched for (focalization). In situ recorded temperature data serve for algorithm initialization and calibration. The AOB was successfully deployed in several consecutive days during two rapid environmental assessment sea trials in 2003 (Mediterranean) and 2004 (Atlantic). Data collected at sea also show that the AOB can be reconfigured as a receiving array for underwater coherent communications in the band up to 15 kHz

    Modelling of ambient noise created by a shipping lane to prepare passive inversion: application to Ushant

    Get PDF
    The Ushant thermal front is a seasonal phenomenon which occurs from May to October in a shallow water environment (100m) of the Iroise Sea (off the coast of the north-western France). It corresponds to the boundary separating a well mixed inner shelf water from an open sea stratified water. To determine the dynamic of the front -or more basically the presence of a stratified or homogeneous water column- the possibility to use a shipping lane as a continuous acoustic source is studied. The originality of this work is to use a single receiver. Simulation results of sounds radiated by a shipping lane in a shallow water environment are presented, both for stratified and homogeneous water column. The corresponding pressure fields show a mean level difference in the frequency band 50-300 Hz. This feature will be used in the future as an observable to differentiate both environments, and thus passively detect the Ushant thermal front. One of the issue to get the mean level offset is to record the shipping lane noise without isolated ship interferences. As a consequence, an optimum mooring position to track the thermal front is suggested by the analysis of the vessel traffic from AIS data (Automatic Identification System)

    The Importance of Ambient Temperature to Growth and the Induction of Flowering

    Get PDF
    Plant development is exquisitely sensitive to the environment. Light quantity, quality, and duration (photoperiod) have profound effects on vegetative morphology and flowering time. Recent studies have demonstrated that ambient temperature is a similarly potent stimulus influencing morphology and flowering. In Arabidopsis, ambient temperatures that are high, but not so high as to induce a heat stress response, confer morphological changes that resemble the shade avoidance syndrome. Similarly, these high but not stressful temperatures can accelerate flowering under short day conditions as effectively as exposure to long days. Photoperiodic flowering entails a series of external coincidences, in which environmental cycles of light and dark must coincide with an internal cycle in gene expression established by the endogenous circadian clock. It is evident that a similar model of external coincidence applies to the effects of elevated ambient temperature on both vegetative morphology and the vegetative to reproductive transition. Further study is imperative, because global warming is predicted to have major effects on the performance and distribution of wild species and strong adverse effects on crop yields. It is critical to understand temperature perception and response at a mechanistic level and to integrate this knowledge with our understanding of other environmental responses, including biotic and abiotic stresses, in order to improve crop production sufficiently to sustainably feed an expanding world population

    Linking benthic biodiversity to the functioning of coastal ecosystems subjected to river runoff (NW Mediterranean)

    Get PDF
    Continental particulate organic matter (POM) plays a major role in the functioning of coastal marine ecosystems as a disturbance as well as an input of nutrients. Relationships linking continental inputs from the Rhone River to biodiversity of the coastal benthic ecosystem and fishery production were investigated in the Golfe du Lion (NW Mediterranean Sea). Macrobenthic community diversity decreased when continen¬tal inputs of organic matter increased, whereas ecosystem production, measured by common sole (Solea solea) fishery yields in the area, increased. Decreases in macrobenthic diversity were mainly related to an increasing abundance of species with specific functional traits, particularly deposit-feeding polychaetes. The decrease in macrobenthic diversity did not result in a decrease, but an increase in ecosystem production, as it enhanced the transfer of continental POM into marine food webs. The present study showed that it is necessary to consider functional traits of species, direct and indirect links between species, and feedback loops to understand the effects of biodiversity on ecosystem functioning and productivity

    A buoy network system for acoustic monitoring

    Get PDF
    Continuous evolution of both methodologies and required technologies for REA; support of sea-based operations as demonstrated through MREA-BP-RADAR acoustic/oceanic model integration; spatially coherent processed buoys/sparse arraysinclude adaptive geoacoustic estimationPOSI; POCTI; FCT Portugal; Royal Netherlands Navy

    AOB - Acoustic Oceanographic Buoy: concept and feasibility

    Get PDF
    The AOB - Acoustic Oceanographic Buoy is the single node of a network of “smart” buoys for acoustic surveillance, Rapid Environmental Assessment (REA) and underwater communications. The AOB is a lightweight surface buoy with a vertical array of acoustic receivers and temperature sensors to be air dropped or hand deployed from a small boat. The received data is geotime and GPS precisely marked, locally stored and processed by on board dedicated DSP hardware. AOBs can exchange data over a local area network that includes submerged, sea surface (like for instance other AOBs) and air or land located nodes, allowing for the integration of all users in a seamless network. Specific software allows AOB usage in complex tasks such as passive or multistatic acoustic surveillance, acoustic observations for REA oceanographic forecast and model calibration, bottom and water column acoustic inversion, underwater communications and cooperating target tracking. The AOB was successfully deployed in several consecutive days during two Maritime REA sea trials in 2003 (Mediterranean), in 2004 (Atlantic) and for an high-frequency underwater communications experiment during MakaiEX, 2005 (Hawai). Data collected at sea shows that the AOB is a versatile, robust and easy to use tool for a variety of broadband underwater acoustic applications.The authors would like to thank the continuous support of NURC, FCT (Portugal) - AOB-JRP, Makai experiments; FSRH-BSAB-542
    • …
    corecore