82 research outputs found
QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles
Background: Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset.
Results: For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNVD). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNVHS). To also increase specificity, SNVs called were overruled when their frequency was below the 80th percentile calculated on the distribution of error frequencies (QQ-SNVHS-P80). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNVD performed similarly to the existing approaches. QQ-SNVHS was more sensitive on all test sets but with more false positives. QQ-SNVHS-P80 was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5 %, QQ-SNVHS-P80 revealed a sensitivity of 100 % (vs. 40-60 % for the existing methods) and a specificity of 100 % (vs. 98.0-99.7 % for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5 % were consistently detected by QQ-SNVHS-P80 from different generations of Illumina sequencers.
Conclusions: We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data
The performance of ensemble-based free energy protocols in computing binding affinities to ROS1 kinase
Optimization of binding affinities for compounds to their target protein is a primary objective in drug discovery. Herein we report on a collaborative study that evaluates a set of compounds binding to ROS1 kinase. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to rank the binding free energies. The predicted binding free energies from ESMACS simulations show good correlations with experimental data for subsets of the compounds. Consistent binding free energy differences are generated for TIES and ESMACS. Although an unexplained overestimation exists, we obtain excellent statistical rankings across the set of compounds from the TIES protocol, with a Pearson correlation coefficient of 0.90 between calculated and experimental activities
A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization.
BACKGROUND: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors. RESULTS: We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both sequence space and ligand (substructure) space. The overall organization of the sequence-based tree and substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors performed better than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). CONCLUSIONS: We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand-based classification uncovers relationships among GPCRs that are not apparent from the sequence-based classification. This will shed light on potential cross-reactivity of GPCR ligands and will aid the design of new ligands with the desired activity profiles. In addition, we linked the ligand-based classification with a ligand-focused sequence-based classification described in literature and proved the potential of this method for de-orphanization of GPCRs.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development
In quite a few diseases, drug resistance due to target variability poses a serious problem in pharmacotherapy. This is certainly true for HIV, and hence, it is often unknown which drug is best to use or to develop against an individual HIV strain. In this work we applied ‘proteochemometric’ modeling of HIV Non-Nucleoside Reverse Transcriptase (NNRTI) inhibitors to support preclinical development by predicting compound performance on multiple mutants in the lead selection stage. Proteochemometric models are based on both small molecule and target properties and can thus capture multi-target activity relationships simultaneously, the targets in this case being a set of 14 HIV Reverse Transcriptase (RT) mutants. We validated our model by experimentally confirming model predictions for 317 untested compound – mutant pairs, with a prediction error comparable with assay variability (RMSE 0.62). Furthermore, dependent on the similarity of a new mutant to the training set, we could predict with high accuracy which compound will be most effective on a sequence with a previously unknown genotype. Hence, our models allow the evaluation of compound performance on untested sequences and the selection of the most promising leads for further preclinical research. The modeling concept is likely to be applicable also to other target families with genetic variability like other viruses or bacteria, or with similar orthologs like GPCRs
The ELF Honest Data Broker:Informatics enabling public-private collaboration in a precompetitive arena
New precompetitive ways of working in the pharmaceutical industry are driving the development of new informatics systems to enable their execution and management. The European Lead Factory (ELF) is a precompetitive, 30-partner collaboration between academic groups, small–medium enterprises and pharmaceutical companies created to discover small molecule hits against novel biological targets. A unique HTS screening and triage workflow has been developed to balance the intellectual property and scientific requirements of all the partners. Here, we describe the ELF Honest Data Broker, a cloud-based informatics system providing the scientific triage tools, fine-grained permissions and management tools required to implement the workflow
The development of the advanced web shop based on purchase history
The goal of thesis is to develop a typical web shop application with some additional functionality. This functionality enables web shop customers to browse products in a more efficient way and thus makes shop more profitable. For this purpose, we developed a specific mechanism that handles product presentation in customer adapted way.
First we describe technologies used for development. Programing language C# is presented shortly as well as some other frameworks (ASP.net, Entity framework,), libraries (LINQ) and other web technologies (HTML, CSS, AJAX). For storing and manipulating data a database with tables in MS SQL database is created.
Furthermore we take a look at requirements, idea and logic of solution. We present solution design and present how specific functionality behaves in case of different user types. We present a solution analysis where a comparison with other similar solutions and user tests are shown. Finally we discuss problems during the development and possibilities about the future improvements
Blood-based metabolic signatures in Alzheimer's disease
Introduction Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods We included 127 Alzheimer's disease (AD) patients and 121 control subjects with cerebrospinal fluid biomarker-confirmed diagnosis (cutoff tau/amyloid β peptide 42: 0.52). Mass spectrometry platforms determined the concentrations of 53 amine compounds, 22 organic acid compounds, 120 lipid compounds, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Results Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified five hubs of metabolic dysregulation: tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2, and platelet-activating factor C16:0. The metabolite network for apolipoprotein E (APOE) ε4 negative AD patients was less cohesive compared with the network for APOE ε4 positive AD patients. Discussion Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD
Cross-validated stepwise regression for identification of novel non-nucleoside reverse transcriptase inhibitor resistance associated mutations
<p>Abstract</p> <p>Background</p> <p>Linear regression models are used to quantitatively predict drug resistance, the phenotype, from the HIV-1 viral genotype. As new antiretroviral drugs become available, new resistance pathways emerge and the number of resistance associated mutations continues to increase. To accurately identify which drug options are left, the main goal of the modeling has been to maximize predictivity and not interpretability. However, we originally selected linear regression as the preferred method for its transparency as opposed to other techniques such as neural networks. Here, we apply a method to lower the complexity of these phenotype prediction models using a 3-fold cross-validated selection of mutations.</p> <p>Results</p> <p>Compared to standard stepwise regression we were able to reduce the number of mutations in the reverse transcriptase (RT) inhibitor models as well as the number of interaction terms accounting for synergistic and antagonistic effects. This reduction in complexity was most significant for the non-nucleoside reverse transcriptase inhibitor (NNRTI) models, while maintaining prediction accuracy and retaining virtually all known resistance associated mutations as first order terms in the models. Furthermore, for etravirine (ETR) a better performance was seen on two years of unseen data. By analyzing the phenotype prediction models we identified a list of forty novel NNRTI mutations, putatively associated with resistance. The resistance association of novel variants at known NNRTI resistance positions: 100, 101, 181, 190, 221 and of mutations at positions not previously linked with NNRTI resistance: 102, 139, 219, 241, 376 and 382 was confirmed by phenotyping site-directed mutants.</p> <p>Conclusions</p> <p>We successfully identified and validated novel NNRTI resistance associated mutations by developing parsimonious resistance prediction models in which repeated cross-validation within the stepwise regression was applied. Our model selection technique is computationally feasible for large data sets and provides an approach to the continued identification of resistance-causing mutations.</p
- …