53 research outputs found

    One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates

    Get PDF
    Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free’ biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy

    One-Pot Aqueous Synthesis of Fluorescent Ag-In-Zn-S Quantum Dot/Polymer Bioconjugates for Multiplex Optical Bioimaging of Glioblastoma Cells

    Get PDF
    Cancer research has experienced astonishing advances recently, but cancer remains a major threat because it is one of the leading causes of death worldwide. Glioblastoma (GBM) is the most malignant brain tumor, where the early diagnosis is vital for longer survival. Thus, this study reports the synthesis of novel water-dispersible ternary AgInS2 (AIS) and quaternary AgInS2-ZnS (ZAIS) fluorescent quantum dots using carboxymethylcellulose (CMC) as ligand for multiplexed bioimaging of malignant glioma cells (U-87 MG). Firstly, AgInS2 core was prepared using a one-pot aqueous synthesis stabilized by CMC at room temperature and physiological pH. Then, an outer layer of ZnS was grown and thermally annealed to improve their optical properties and split the emission range, leading to core-shell alloyed nanostructures. Their physicochemical and optical properties were characterized, demonstrating that luminescent monodispersed AIS and ZAIS QDs were produced with average sizes of 2.2 nm and 4.3 nm, respectively. Moreover, the results evidenced that they were cytocompatible using in vitro cell viability assays towards human embryonic kidney cell line (HEK 293T) and U-87 MG cells. These AIS and ZAIS successfully behaved as fluorescent nanoprobes (red and green, resp.) allowing multiplexed bioimaging and biolabeling of costained glioma cells using confocal microscopy

    CARACTERIZAÇÃO SISTEMA DE COLAGEM DUPLA-FACE PARA ASSENTAMENTO DE REVESTIMENTO CERÂMICO

    Get PDF
    Neste estudo foi realizada a caracterização de sistema de colagem dupla-face para assentamento de placas cerùmicas. Foram realizados ensaios de determinação da densidade, dureza, propriedades mecùnicas à tração, difração de raios-X, espectroscopia na região do infravermelho e microscopia eletrÎnica de varredura acoplada com espectroscopia de energia dispersiva. Os resultados obtidos confirmaram algumas informaçÔes disponibilizadas pelo fabricante do priduto e permitiram o conhecimento de propriedades que serão importantes na anålise do desempenho e durabilidade do mesmo no assentamento de placas cerùmicas de revestimento

    Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    Get PDF
    The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding Îł-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite with the development of interfacial reactions between organic-inorganic and inorganic-inorganic components was observed. These hybrid nanostructures produced better integration between nanoparticles and epoxy matrix and improved mechanical properties that are expected to enhance the overall performance of the system against underwater corrosion

    Toxic epidermal necrolysis and Stevens-Johnson syndrome

    Get PDF
    Toxic epidermal necrolysis (TEN) and Stevens Johnson Syndrome (SJS) are severe adverse cutaneous drug reactions that predominantly involve the skin and mucous membranes. Both are rare, with TEN and SJS affecting approximately 1or 2/1,000,000 annually, and are considered medical emergencies as they are potentially fatal. They are characterized by mucocutaneous tenderness and typically hemorrhagic erosions, erythema and more or less severe epidermal detachment presenting as blisters and areas of denuded skin. Currently, TEN and SJS are considered to be two ends of a spectrum of severe epidermolytic adverse cutaneous drug reactions, differing only by their extent of skin detachment. Drugs are assumed or identified as the main cause of SJS/TEN in most cases, but Mycoplasma pneumoniae and Herpes simplex virus infections are well documented causes alongside rare cases in which the aetiology remains unknown. Several drugs are at "high" risk of inducing TEN/SJS including: Allopurinol, Trimethoprim-sulfamethoxazole and other sulfonamide-antibiotics, aminopenicillins, cephalosporins, quinolones, carbamazepine, phenytoin, phenobarbital and NSAID's of the oxicam-type. Genetic susceptibility to SJS and TEN is likely as exemplified by the strong association observed in Han Chinese between a genetic marker, the human leukocyte antigen HLA-B*1502, and SJS induced by carbamazepine. Diagnosis relies mainly on clinical signs together with the histological analysis of a skin biopsy showing typical full-thickness epidermal necrolysis due to extensive keratinocyte apoptosis. Differential diagnosis includes linear IgA dermatosis and paraneoplastic pemphigus, pemphigus vulgaris and bullous pemphigoid, acute generalized exanthematous pustulosis (AGEP), disseminated fixed bullous drug eruption and staphyloccocal scalded skin syndrome (SSSS). Due to the high risk of mortality, management of patients with SJS/TEN requires rapid diagnosis, evaluation of the prognosis using SCORTEN, identification and interruption of the culprit drug, specialized supportive care ideally in an intensive care unit, and consideration of immunomodulating agents such as high-dose intravenous immunoglobulin therapy. SJS and TEN are severe and life-threatening. The average reported mortality rate of SJS is 1-5%, and of TEN is 25-35%; it can be even higher in elderly patients and those with a large surface area of epidermal detachment. More than 50% of patients surviving TEN suffer from long-term sequelae of the disease

    Synthesis and characterization of CdS quantum dots with carboxylic-functionalized poly (vinyl alcohol) for bioconjugation

    Get PDF
    AbstractIn the present research it is reported the synthesis and characterization of CdS nanoparticles (NPs) prepared using carboxylic-functionalized poly (vinyl alcohol) (PVA) as the ligand via aqueous route at room temperature and ambient pressure. Different molar concentrations of carboxylic-PVA and PVA were investigated aiming at producing stable colloidal systems. Carboxylic-PVA was conjugated with BSA (bovine serum albumin) and used as capping ligand in the preparation of CdS nanocrystals. UV–visible spectroscopy, photoluminescence spectroscopy, and transmission electron microscopy were used to characterize the kinetics and the relative stability of polymer-capped CdS nanocrystals. The results have clearly indicated that the carboxylic-functionalized PVA was much more effective on nucleating and stabilizing colloidal CdS nanoparticles in aqueous suspensions compared to PVA. In addition, the CdS nanocrystals were obtained in the so-called “quantum-size confinement regime”, with the calculated average size below 4.0 nm and fluorescent activity. Thus, a novel simple route was successfully developed for synthesizing nanohybrids based on quantum dots and water-soluble chemically functionalized polymers with incorporated carboxylic moiety with the possibility of direct bioconjugation

    One-Step Biofunctionalization of Quantum Dots with Chitosan and N-palmitoyl Chitosan for Potential Biomedical Applications

    No full text
    Carbohydrates and derivatives (such as glycolipids, glycoproteins) are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles. N-palmitoyl chitosan (C-Pal) was prepared aiming at altering the lipophilic behavior of chitosan (CHI), but also retaining its reasonable water solubility for potential biomedical applications. CHI and C-Pal were used for producing biofunctionalized CdS quantum dots (QDs) as colloidal water dispersions. Fourier transform infrared spectroscopy (FTIR), thermal analysis (TG/DSC), surface contact angle (SCA), and degree of swelling (DS) in phosphate buffer were used to characterize the carbohydrates. Additionally, UV-Visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), dynamic light scattering (DLS), scanning and transmission electron microscopy (SEM/TEM) were used to evaluate the precursors and nanobioconjugates produced. The FTIR spectra associated with the thermal analysis results have undoubtedly indicated the presence of N-palmitoyl groups “grafted” to the chitosan chain (C-Pal) which significantly altered its behavior towards water swelling and surface contact angle as compared to the unmodified chitosan. Furthermore, the results have evidenced that both CHI and C-Pal performed as capping ligands on nucleating and stabilizing colloidal CdS QDs with estimated average size below 3.5 nm and fluorescent activity in the visible range of the spectra. Therefore, an innovative “one-step” process was developed via room temperature aqueous colloidal chemistry for producing biofunctionalized quantum dots using water soluble carbohydrates tailored with amphiphilic behavior offering potential applications as fluorescent biomarkers in the investigation of glycoconjugates for the nutrition, biology, pharmaceutical, and medicine fields
    • 

    corecore