14 research outputs found

    In vitro pharmacokinetics of anti-psoriatic fumaric acid esters

    Get PDF
    Background: Psoriasis is a chronic inflammatory skin disease that can be successfully treated with a mixture of fumaric acid esters (FAE) formulated as enteric-coated tablets for oral use. These tablets consist of dimethylfumarate (DMF) and salts of monoethylfumarate (MEF) and its main bioactive metabolite is monomethylfumarate (MMF). Little is known about the pharmacokinetics of these FAE. The aim of the present study was to investigate the hydrolysis of DMF to MMF and the stability of MMF, DMF and MEF at in vitro conditions representing different body compartments. Results: DMF is hydrolyzed to MMF in an alkaline environment (pH 8), but not in an acidic environment (pH 1). In these conditions MMF and MEF remained intact during the period of analysis (6 h). Interestingly, DMF was hardly hydrolyzed to MMF in a buffer of pH 7.4, but was rapidly hydrolyzed in human serum having the same pH. Moreover, in whole blood the half-life of DMF was dramatically reduced as compared to serum. The concentrations of MMF and MEF in serum and whole blood decreased with increasing time. These data indicate that the majority of the FAE in the circulation are metabolized by one or more types of blood cells. Additional experiments with purified blood cell fractions resuspended in phosphate buffered saline (pH 7.4) revealed that at concentrations present in whole blood monocytes/lymphocytes, but not granulocytes and erythrocytes, effectively hydrolyzed DMF to MMF. Furthermore, in agreement with the data obtained with the pure components of the tablet, the enteric-coated tablet remained intact at pH 1, but rapidly dissolved at pH 8. Conclusion: Together, these in vitro data indicate that hydrolysis of DMF to MMF rapidly occurs at pH 8, resembling that within the small intestines, but not at pH 1 resembling the pH in the stomach. At both pHs MMF and MEF remained intact. These data explain the observation that after oral FAE intake MMF and MEF, but not DMF, can be readily detected in the circulation of human healthy volunteers and psoriasis patients

    Continuously improving the practice of cardiology

    Get PDF
    Guidelines for the management of patients with cardiovascular disease are designed to assist cardiologists and other physicans in their practice. Surveys are conducted to assess whether guidelines are followed in practice. The results of surveys on acute coronary syndromes, coronary revascularisation, secondary prevention, valvular heart disease and heart failure are presented. Comparing surveys conducted between 1995 and 2002, a gradual improvement in use ofsecondary preventive therapy is observed. Nevertheless, important deviations from established guidelines are noted, with a significant variation among different hospitals in the Netherlands and in other European countries. Measures for fiuther improvement of clinical practice indude more rapid treatment of patients with evolving myocardial infarction, more frequent use of clopidogrel and glycoprotein IIb/IIIa receptor blockers in patients with acute coronary syndromes, more frequent use of 5-blockers in patients with heart failure and more intense measures to encourage patients to stop smoking. Targets for the proportion ofpatients who might receive specific therapies are presented

    Breast Cancer Epigenetics: From DNA Methylation to microRNAs

    Get PDF
    Both appropriate DNA methylation and histone modifications play a crucial role in the maintenance of normal cell function and cellular identity. In cancerous cells these “epigenetic belts” become massively perturbed, leading to significant changes in expression profiles which confer advantage to the development of a malignant phenotype. DNA (cytosine-5)-methyltransferase 1 (Dnmt1), Dnmt3a and Dnmt3b are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells. Intriguingly, DNMTs were found to be overexpressed in cancerous cells, which is believed to partly explain the hypermethylation phenomenon commonly observed in tumors. However, several lines of evidence indicate that further layers of gene regulation are critical coordinators of DNMT expression, catalytic activity and target specificity. Splice variants of DNMT transcripts have been detected which seem to modulate methyltransferase activity. Also, the DNMT mRNA 3′UTR as well as the coding sequence harbors multiple binding sites for trans-acting factors guiding post-transcriptional regulation and transcript stabilization. Moreover, microRNAs targeting DNMT transcripts have recently been discovered in normal cells, yet expression of these microRNAs was found to be diminished in breast cancer tissues. In this review we summarize the current knowledge on mechanisms which potentially lead to the establishment of a DNA hypermethylome in cancer cells
    corecore