10 research outputs found

    Fishmeal supplementation during ovine pregnancy and lactation protects against maternal stress-induced programming of the offspring immune system

    Get PDF
    Background: Prenatally stressed offspring exhibit increased susceptibility to inflammatory disorders due to in utero programming. Research into the effects of n-3 PUFAs shows promising results for the treatment and prevention of these disorders. The purpose of this study was to investigate whether maternal fishmeal supplementation during pregnancy and lactation protects against programming of the offspring\u27s immune response following simulated maternal infection. Methods: In order to accomplish this, 53 ewes were fed a diet supplemented with fishmeal (FM; rich in n-3 PUFA) or soybean meal (SM; rich in n-6 PUFAs) from day 100 of gestation (gd 100) through lactation. On gd135, half the ewes from each dietary group were challenged with either 1.2 μg/kg Escherichia coli lipopolysaccharide (LPS) endotoxin to simulate a bacterial infection, or saline as the control. At 4.5 months of age the offspring\u27s dermal immune response was assessed by cutaneous hypersensitivity testing with ovalbumin (OVA) and candida albicans (CAA) 21 days after sensitization. Skinfold measurements were taken and serum blood samples were also collected to assess the primary and secondary antibody immune response. Results: Offspring born to SM + LPS mothers had a significantly greater change in skinfold thickness in response to both antigens as well as a greater secondary antibody response to OVA compared to all treatments. Conclusions: Supplementation during pregnancy with FM appears to protect against adverse fetal programming that may occur during maternal infection and this may reduce the risk of atopic disease later in life

    Mesenteric lymph node transcriptome profiles in BALB/c mice sensitized to three common food allergens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Food allergy is a serious health concern among infants and young children. Although immunological mechanism of food allergy is well documented, the molecular mechanism(s) involved in food allergen sensitization have not been well characterized. Therefore, the present study analyzed the mesenteric lymph node (MLN) transcriptome profiles of BALB/c mice in response to three common food allergens.</p> <p>Results</p> <p>Microarray analysis identified a total of 1361, 533 and 488 differentially expressed genes in response to β-lactoglobulin (BLG) from cow's milk, ovalbumin (OVA) from hen's egg white and peanut agglutinin (PNA) sensitizations, respectively (p < 0.05). A total of 150 genes were commonly expressed in all antigen sensitized groups. The expression of seven representative genes from microarray experiment was validated by real-time RT-PCR. All allergens induced significant ear swelling and serum IgG1 concentrations, whereas IgE concentrations were increased in BLG- and PNA-treated mice (p < 0.05). Treatment with OVA and PNA significantly induced plasma histamine concentrations (p < 0.05). The PCA demonstrated the presence of allergen-specific IgE in the serum of previously sensitized and challenged mice.</p> <p>Conclusions</p> <p>Immunological profiles indicate that the allergen dosages used are sufficient to sensitize the BALB/c mice and to conduct transcriptome profiling. Microarray studies identified several differentially expressed genes in the sensitization phase of the food allergy. These findings will help to better understand the underlying molecular mechanism(s) of food allergen sensitizations and may be useful in identifying the potential biomarkers of food allergy.</p

    2007: Mycotoxins and the pet food industry: toxicological evidence and risk assessment

    No full text
    Abstract Mycotoxin contamination in pet food poses a serious health threat to pets, causing an emotional and economical concern to the pet owners. Aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins and fusaric acid have been found in the ingredients and final products of pet food, resulting in both acute toxicity and chronic health problems in pets. Toxicological interaction among mycotoxins as a natural mixture further complicates the issue. The concepts of &quot;risk assessment&quot;, using hazard identification, dose-response assessment, no observable adverse effect level (NOAEL), and lowest observed adverse effect level (LOAEL), should be applied to assess the risk and safety of mycotoxins in pet food, thereby instilling public confidence in the pet food industry
    corecore