97 research outputs found
Mechanism of droplet-formation in a supersonic microfluidic spray device
Spray drying is an approach employed in automotive, food, and pharmaceutical industries as a robust and cost efficient liquid atomization technique offering direct control over droplet dimensions. The majority of commercially available spray nozzles are designed for large throughput spray drying applications or uniform surface coating, but microfluidic nebulizers have recently been developed as small scale alternatives. Here, we explore the physical parameters that define the droplet size and formation under supersonic flow conditions commonly found in microfluidic spray drying systems. We examined the spray nozzle operation using high speed imaging and laser scattering measurements, which allowed us to describe the spray regimes and droplet size distributions. It was determined that by using this spray nozzle device, droplets with diameters of 4–8 μm could be generated. Moreover, we show that the supersonic de Laval nozzle model can be used to predict the average droplet size. Our approach can be used as a platform for interfacing fluid microprocessing with gas phase detection and characterization
Kinetics of fragmentation and dissociation of two-strand protein filaments: Coarse-grained simulations and experiments.
While a significant body of investigations have been focused on the process of protein self-assembly, much less is understood about the reverse process of a filament breaking due to thermal motion into smaller fragments, or depolymerization of subunits from the filament ends. Indirect evidence for actin and amyloid filament fragmentation has been reported, although the phenomenon has never been directly observed either experimentally or in simulations. Here we report the direct observation of filament depolymerization and breakup in a minimal, calibrated model of coarse-grained molecular simulation. We quantify the orders of magnitude by which the depolymerization rate from the filament ends koff is larger than fragmentation rate k- and establish the law koff/k- = exp[(ε‖ - ε⊥)/kBT] = exp[0.5ε/kBT], which accounts for the topology and energy of bonds holding the filament together. This mechanism and the order-of-magnitude predictions are well supported by direct experimental measurements of depolymerization of insulin amyloid filaments.This research was supported by the ERC, EPSRC, BBSRC, and the Newman Foundation.This is the author accepted manuscript. The final version is available from the American Institute of Physics via http://dx.doi.org/10.1063/1.496236
Métodos para quantificar a volatilização de amômia em solo fertilizado com uréia.
As perdas gasosas nitrogenadas, principalmente por volatilização, são consideráveis em diversas atividades agropecuárias, como na adubação de pastagens. A utilização de métodos simples e acessíveis para mensurar essas perdas é de extrema necessidade na avaliação do ciclo de N nesses sistemas. Assim, o objetivo desse trabalho foi determinar métodos para quantificar o N-NH3 volatilizado da uréia aplicada ao solo, que tenham pouca interferência nos processos de volatilização. O experimento foi conduzido em casa de vegetação pertencente ao Departamento de Zootecnia da Faculdade de Zootecnia e Engenharia de Alimentos da USP. O delineamento experimental utilizado foi inteiramente casualizado com cinco repetições. Os tratamentos foram: absorvedor de espuma a 1. 5. 10 e 20 cm do solo; absorvedor de papel a 1, 5, 10 e 20 cm do solo; absorvedor com ácido a 1, 5 e 10 cm do solo; coletor semi-aberto estático; e balanço de "15"N (método de referência). O absorvedor de espuma colocado a 1 cm do solo estimou as reais perdas diárias e acumulada de amônia. sendo eficiente na captação da amônia volatilizada da uréia aplicada ao solo. Os absorvedores com ácido nas alturas de 1, 5 e 10 cm do solo e os absorvedores de papel nas alturas de 1 e 5 cm do solo apresentaram estimativas reais somente para as perdas acumuladas de N-NH3 por volatilização. Absorvedor de N-NH"3" "15"N; perdas de N-NH"3"
Cold Dark Matter in SUSY Theories. The Role of Nuclear Form Factors and the Folding with the LSP Velocity
The momentum transfer dependence of the total cross section for elastic
scattering of cold dark matter candidates, i.e. lightest supersymmetric
particle (LSP), with nuclei is examined. The presented calculations of the
event rates refer to a number of representative nuclear targets throughout the
periodic table and have been obtained in a relatively wide phenomenologically
allowed SUSY parameter space. For the coherent cross sections it is shown that,
since the momentum transfer can be quite big for large mass of the LSP and
heavy nuclei even though the energy transfer is small (), the
total cross section can in such instances be reduced by a factor of about five.
For the spin induced cross section of odd-A nuclear targets, as is the case of
studied in this work, we found that the reduction is less
pronounced, since the high multipoles tend to enhance the cross section as the
momentum transfer increases (for LSP ) and partially cancell
the momentum retardation. The effect of the Earth's revolution around the sun
on these event rates is also studied by folding with a Maxwellian LSP-velocity
distribution which is consistent with its density in the halos. We thus found
that the convoluted event rates do not appreciably change compared to those
obtained with an average velocity. The event rates increase with A and, in the
SUSY parameter space considered, they can reach values up to 140
for Pb. The modulation effect, however, was found to be small
(less than ).Comment: 23 LATEX pages, 4 Tables, 3 PostScript Figures included. Phys. Rev.
D, to be publishe
Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors
Molecular rotors are fluorophores that have a fluorescence quantum yield that depends upon intermolecular rotation. The fluorescence quantum yield, intensity and lifetime of molecular rotors all vary as functions of viscosity, as high viscosities inhibit intermolecular rotation and cause an increase in the non-radiative decay rate. As such, molecular rotors can be used to probe viscosity on microscopic scales. Here, we apply fluorescence lifetime imaging microscopy (FLIM) to measure the fluorescence lifetimes of three different molecular rotors, in order to determine the microscopic viscosity in two model systems with significant biological interest. First, the constituents of a novel protocell - a model of a prebiotic cell - were studied using the molecular rotors BODIPY C10 and kiton red. Second, amyloid formation was investigated using the molecular rotor Cy3.</p
Cocaine, d -amphetamine, and pentobarbital effects on responding maintained by food or cocaine in rhesus monkeys
The effects of IM injections of cocaine, d -amphetamine, and pentobarbital were studied in rhesus monkeys whose lever-press responding was maintained under a second-order fixed-interval, fixed ratio schedule of reinforcement. Within each session, fixed-interval components, ending with the IV injection of 30 μg/kg cocaine (one group of monkeys) or the delivery of a 300 mg food pellet (second group of monkeys), alternated with fixed-interval components ending without an injection of cocaine or the delivery of food (extinction). Drug pretreatments generally caused comparable dose-related decreases in the overall rates of responding reinforced either by cocaine or by food. Response rates during extinction usually increased and then decreased as the dose of each drug increased. An analysis of the drug effects on response rates in different temporal segments of the fixed intervals showed that in both the reinforcement and extinction components, the normally low control rates of responding which occurred earlier in the intervals were usually increased, while higher control rates which occurred later in the intervals were increased less or decreased. Thus, the effects of these drugs were relatively independent of the reinforcing event (food or cocaine) and tended to depend more on the ongoing rate of responding under these conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46409/1/213_2004_Article_BF00427508.pd
Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia
Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47–2.15; P = 2.71 × 10−9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55–2.55; P = 5.08 × 10−8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers
- …