455 research outputs found
Abstract This study applied the Model of Acidification
of Groundwater in Catchments (MAGIC) to estimate the sensitivity of 66 watersheds in the Southern Blue Ridge Province of the Southern Appalachian Mountains, United States, to changes in atmospheric sulfur (S) deposition. MAGIC predicted that stream acid neutralizing capacity (ANC) values were above 20 μeq/L in all modeled watersheds in 1860. Hindcast simulations suggested that the media
Faster linearizability checking via -compositionality
Linearizability is a well-established consistency and correctness criterion
for concurrent data types. An important feature of linearizability is Herlihy
and Wing's locality principle, which says that a concurrent system is
linearizable if and only if all of its constituent parts (so-called objects)
are linearizable. This paper presents -compositionality, which generalizes
the idea behind the locality principle to operations on the same concurrent
data type. We implement -compositionality in a novel linearizability
checker. Our experiments with over nine implementations of concurrent sets,
including Intel's TBB library, show that our linearizability checker is one
order of magnitude faster and/or more space efficient than the state-of-the-art
algorithm.Comment: 15 pages, 2 figure
Recommended from our members
Large-scale macroinvertebrate assemblage patterns from least-disturbed wadeable stream sites across the 48 contiguous US states
We quantified the patterns in macroinvertebrate assemblages and their
associated environmental gradients from 457 least-disturbed wadeable
stream sites across the 48 contiguous United States sampled as part
of US EPA’s National Wadeable Stream Assessment. The majority of the
variation in assemblage composition at the finest taxonomic resolution
was related to substrate size,%fastwater habitat, water chemistry, as well
as east-west geographic position and elevation. Sites were classified into
5 groups with cluster analysis, and group membership was predicted from
environmental data using classification tree analysis (CTA). CTA correctly
classified 69.1%of test sites and indicated that groups were distinguished
by east-west location, and by factors distinguishing mountain streams
from lowland/plains streams. Eastern and western groups that had similar
environmental characteristics had very similar coarse scale taxa composition
and convergent taxa traits. Ordinations confirmed that composition
patterns using coarse level taxa resolution and taxa traits no longer reflected
geographic distinctions, but were only related to non-geographic
environmental factors. However, composition patterns based on traits,
coarse taxa, and macroinvertebrates identified to the finest practical level
were all correlated with the same dominant non-geographic environmental
gradients.Keywords: indicator taxa, classification, assemblages, traits, stream, macroinvertebrate, least-disturbe
Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs
Previous work has shown that there are two major complexity barriers in the
synthesis of fault-tolerant distributed programs: (1) generation of fault-span,
the set of states reachable in the presence of faults, and (2) resolving
deadlock states, from where the program has no outgoing transitions. Of these,
the former closely resembles with model checking and, hence, techniques for
efficient verification are directly applicable to it. Hence, we focus on
expediting the latter with the use of multi-core technology.
We present two approaches for parallelization by considering different design
choices. The first approach is based on the computation of equivalence classes
of program transitions (called group computation) that are needed due to the
issue of distribution (i.e., inability of processes to atomically read and
write all program variables). We show that in most cases the speedup of this
approach is close to the ideal speedup and in some cases it is superlinear. The
second approach uses traditional technique of partitioning deadlock states
among multiple threads. However, our experiments show that the speedup for this
approach is small. Consequently, our analysis demonstrates that a simple
approach of parallelizing the group computation is likely to be the effective
method for using multi-core computing in the context of deadlock resolution
A comparison of transient elastography with acoustic radiation force impulse elastography for the assessment of liver health in patients with chronic hepatitis C: Baseline results from the TRACER study
BACKGROUND: Liver stiffness measurements can be used to assess liver fibrosis and can be acquired by transient elastography using FibroScan® and with Acoustic Radiation Force Impulse imaging. The study aimed to establish liver stiffness measurement scores using FibroScan® and Acoustic Radiation Force Impulse in a chronic hepatitis C cohort and to explore the correlation and agreement between the scores and the factors influencing agreement. METHODS: Patients had liver stiffness measurements acquired with FibroScan® (right lobe of liver) and Acoustic Radiation Force Impulse (right and left lobe of liver). We used Spearman’s correlation to explore the relationship between FibroScan® and Acoustic Radiation Force Impulse scores. A Bland–Altman plot was used to evaluate bias between the mean percentage differences of FibroScan® and Acoustic Radiation Force Impulse scores. Univariable and multivariable analyses were used to assess how factors such as body mass index, age and gender influenced the agreement between liver stiffness measurements. RESULTS: Bland-Altman showed the average (95% CI) percentage difference between FibroScan® and Acoustic Radiation Force Impulse scores was 27.5% (17.8, 37.2), p < 0.001. There was a negative correlation between the average and percentage difference of the FibroScan® and Acoustic Radiation Force Impulse scores (r (95% CI) = −0.41 (−0.57, −0.21), p < 0.001), thus showing that percentage difference gets smaller for greater FibroScan® and Acoustic Radiation Force Impulse scores. Body mass index was the biggest influencing factor on differences between FibroScan® and Acoustic Radiation Force Impulse (r = 0.12 (0.01, 0.23), p = 0.05). Acoustic Radiation Force Impulse scores at segment 5/8 and the left lobe showed good correlation (r (95% CI) = 0.83 (0.75, 0.89), p < 0.001). CONCLUSION: FibroScan® and Acoustic Radiation Force Impulse had similar predictive values for the assessment of liver stiffness in patients with chronic hepatitis C infection; however, the level of agreement varied across lower and higher scores
Constraining Absolute Plate Motions Since the Triassic
The absolute motion of tectonic plates since Pangea can be derived from observations of hotspot trails, paleomagnetism, or seismic tomography. However, fitting observations is typically carried out in isolation without consideration for the fit to unused data or whether the resulting plate motions are geodynamically plausible. Through the joint evaluation of global hotspot track observations (for times <80 Ma), first‐order estimates of net lithospheric rotation (NLR), and parameter estimation for paleo–trench migration (TM), we present a suite of geodynamically consistent, data‐optimized global absolute reference frames from 220 Ma to the present. Each absolute plate motion (APM) model was evaluated against six published APM models, together incorporating the full range of primary data constraints. Model performance for published and new models was quantified through a standard statistical analyses using three key diagnostic global metrics: root‐mean square plate velocities, NLR characteristics, and TM behavior. Additionally, models were assessed for consistency with published global paleomagnetic data and for ages <80 Ma for predicted relative hotspot motion, track geometry, and time dependence. Optimized APM models demonstrated significantly improved global fit with geological and geophysical observations while performing consistently with geodynamic constraints. Critically, APM models derived by limiting average rates of NLR to ~0.05°/Myr and absolute TM velocities to ~27‐mm/year fit geological observations including hotspot tracks. This suggests that this range of NLR and TM estimates may be appropriate for Earth over the last 220 Myr, providing a key step toward the practical integration of numerical geodynamics into plate tectonic reconstructions
Recommended from our members
Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York
The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 μeq L⁻¹). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m⁻² yr to protect lake ANC to 50 μeq L⁻¹. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia
Recovery of harmonic-like behavior of the polar mode in BaTiO3 at high pressures
The local structure of high-pressure BaTiO3 has been interrogated by neutron total scattering methods up to pressures of 4.18 GPa at ambient temperature. Competitive refinements of cubic, tetragonal, and rhombohedral distortion modes against pair distribution functions indicate contrasting local structure behavior of temperature- and pressure-induced cubic BaTiO3. Suppression of the mode amplitude, isotropy of the order-parameter direction, and loss of sensitivity to correlated Ti displacements at high pressure all suggest a high-pressure local structure that is more consistent with the harmonic approximation rather than an order-disorder model which better describes high-temperature cubic BaTiO3 in the vicinity of the tetragonal phase transition
- …