133 research outputs found
The effects of physical exercise on plasma levels of relaxin, NTproANP, and NTproBNP in patients with ischemic heart disease
The insulin-like and vasodilatatory polypeptide relaxin (RLX), formerly known as a pregnancy hormone, has gained interest as a potential humoral mediator in human heart failure. Controversy exists about the relation between plasma levels of RLX and the severity of heart failure. The present study was designed to determine the course of RLX, atrial, and brain natriuretic peptide (NT-proANP and NT-proBNP) during physical exercise in patients with ischemic heart disease (IHD) and to relate hormone levels to peak cardiac power output (CPO) as a measure of cardiopulmonary function with prognostic relevance. 40 patients with IHD were studied during right-heart-catheterization at rest and during supine bicycle ergometry. RLX, NTproBNP, and NTproANP were determined before, during exercise, and after recovery. NT-proANP and NT-proBNP levels increased during maximal charge, and recovery while RLX levels decreased. Cardiac power output at maximal charge correlated inversely with NTproANP and NTproBNP but positively with RLX. Patients with high degree heart failure (CPO < 1.96 W) had higher NTproANP and NTproB-NP and lower RLX levels than patients with low degree heart failure. While confirming the role of NTproANP and NTproBNP as markers for the severity of heart failure, the present data do not support the concept that plasma levels of RLX are related to the severity of myocardial dysfunction and that systemic RLX acts as a compensatory vasodilatatory response hormone in ischemic heart disease
Preoperative and perioperative use of levosimendan in cardiac surgery: European expert opinion
In cardiac surgery, postoperative low cardiac output has been shown to correlate with increased rates of organ failure and mortality. Catecholamines have been the standard therapy for many years, although they carry substantial risk for adverse cardiac and systemic effects, and have been reported to be associated with increased mortality. On the other hand, the calcium sensitiser and potassium channel opener levosimendan has been shown to improve cardiac function with no imbalance in oxygen consumption, and to have protective effects in other organs. Numerous clinical trials have indicated favourable cardiac and non-cardiac effects of preoperative and perioperative administration of levosimendan. A panel of 27 experts from 18 countries has now reviewed the literature on the use of levosimendan in on-pump and off-pump coronary artery bypass grafting and in heart valve surgery. This panel discussed the published evidence in these various settings, and agreed to vote on a set of questions related to the cardioprotective effects of levosimendan when administered preoperatively, with the purpose of reaching a consensus on which patients could benefit from the preoperative use of levosimendan and in which kind of procedures, and at which doses and timing should levosimendan be administered. Here, we present a systematic review of the literature to report on the completed and ongoing studies on levosimendan, including the newly commenced LEVO-CTS phase III study (NCT02025621), and on the consensus reached on the recommendations proposed for the use of preoperative levosimendan
S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculary system
Hemodynamic monitoring and adequate volume-therapy, as well as the treatment with positive inotropic drugs and vasopressors are the basic principles of the postoperative intensive care treatment of patient after cardiothoracic surgery. The goal of these S3 guidelines is to evaluate the recommendations in regard to evidence based medicine and to define therapy goals for monitoring and therapy. In context with the clinical situation the evaluation of the different hemodynamic parameters allows the development of a therapeutic concept and the definition of goal criteria to evaluate the effect of treatment
Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury
<p>Abstract</p> <p>Background</p> <p>Cardiac surgery-associated acute kidney injury (CSA-AKI) contributes to increased morbidity and mortality. However, its pathophysiology remains incompletely understood. We hypothesized that intra-operative mean arterial pressure (MAP) relative to pre-operative MAP would be an important predisposing factor for CSA-AKI.</p> <p>Methods</p> <p>We performed a prospective observational study of 157 consecutive high-risk patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). The primary exposure was delta MAP, defined as the pre-operative MAP minus average MAP during CPB. Secondary exposure was CPB flow. The primary outcome was early CSA-AKI, defined by a minimum RIFLE class - RISK. Univariate and multivariate logistic regression were performed to explore for association between delta MAP and CSA-AKI.</p> <p>Results</p> <p>Mean (± SD) age was 65.9 ± 14.7 years, 70.1% were male, 47.8% had isolated coronary bypass graft (CABG) surgery, 24.2% had isolated valve surgery and 16.6% had combined procedures. Mean (± SD) pre-operative, intra-operative and delta MAP were 86.6 ± 13.2, 57.4 ± 5.0 and 29.4 ± 13.5 mmHg, respectively. Sixty-five patients (41%) developed CSA-AKI within in the first 24 hours post surgery. By multivariate logistic regression, a delta MAPâ„26 mmHg (odds ratio [OR], 2.8; 95%CI, 1.3-6.1, p = 0.009) and CPB flow rate â„54 mL/kg/min (OR, 0.2, 0.1-0.5, p < 0.001) were independently associated with CSA-AKI. Additional variables associated with CSA-AKI included use of a side-biting aortic clamp (OR, 3.0; 1.3-7.1, p = 0.012), and body mass index â„25 (OR, 4.2; 1.6-11.2, p = 0.004).</p> <p>Conclusion</p> <p>A large delta MAP and lower CPB flow during cardiac surgery are independently associated with early post-operative CSA-AKI in high-risk patients. Delta MAP represents a potentially modifiable intra-operative factor for development of CSA-AKI that necessitates further inquiry.</p
Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use
Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years
- âŠ