1,993 research outputs found

    Rheological Model for Wood

    Full text link
    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.Comment: 37 pages, 13 figures, 10 table

    Hierarchical Strategy of Model Partitioning for VLSI-Design Using an Improved Mixture of Experts Approach

    Get PDF
    The partitioning of complex processor models on the gate and register-transfer level for parallel functional simulation based on the clock-cycle algorithm is considered. We introduce a hierarchical partitioning scheme combining various partitioning algorithms in the frame of a competing strategy. Melting together different partitioning results within one level using superpositions we crossover to a mixture of experts one. This approach is improved applying genetic algorithms. In addition we present two new partitioning algorithms both of them taking cones as fundamental units for building partitions

    CORA scoping test B. Test results report

    Get PDF

    Typology of streams in Germany based on benthic invertebrates: Ecoregions, zonation, geology and substrate

    Get PDF
    AbstractBased on 390 benthic invertebrate samples from near-natural streams in Germany we defined eight stream type groups by Non-metric multidimensional scaling (NMS). The taxa lists were restricted to Mollusca, Ephemeroptera, Odonata, Plecoptera, Coleoptera and Trichoptera species and evaluated on presence/absence level. At genus level, streams located in the lowlands differ from streams in lower mountainous areas and the Alps, while the two latter groups were undistinguishable. At species level, a clear separation of different stream size classes is visible in the lowlands; a second gradient is related to the bottom substrate. Streams in the Alps can be distinguished from streams in lower mountainous areas at species level. Within the lower mountainous regions a size gradient is detectable, a less obvious gradient indicates catchment geology. The resulting “bottom-up” stream typology is compared to other stream typological systems in Germany

    Hierarchical Model Partitioning for Parallel VLSI-Simulation Using Evolutionary Algorithms improved bei superpositions of partitions

    Get PDF
    Parallelization of VLSI-simulation exploiting model-inherent parallelism is a promising way to accelerate verification processes for whole processor designs. Thereby partitioning of hardware models influences the effciency of following parallel simulations essentially. Based on a formal model of Parallel Cycle Simulation we introduce partition valuation combining communication and load balancing aspects. We choose a 2-level hierarchical partitioning scheme providing a framework for a mixture of experts strategy. Considering a complete model of a PowerPC 604 processor, we demonstrate that Evolutionary Algorithms can be applied successfully to our model partitioning problem on the second hierarchy level, supposing a reduced problem complexity after fast pre-partitioning on the first level. For the first time, we apply superpositions during execution of Evolutionary Algorithms, resulting in a faster decreasing fitness function and an acceleration of population handling

    Vascular white matter lesions negatively correlate with brain metastases in malignant melanoma - results from a retrospective comparative analysis

    Get PDF
    Brain metastasis (BM) is a major complication of different cancers. There is increasing evidence for influence of vascular factors on BM in patients with non-small cell lung cancer (NSCLC). It is not known if the same is true for other tumors that might rely on different forms of vasculogenesis. The objective of this retrospective study was to evaluate a possible negative association of vascular white matter lesions and vascular risk factors (vasRF) with brain metastases in patients with melanoma

    Simulation and Visualization of Medical Application to the Inner Ear of the Guinea Pig to Reduce Animal Experiments

    Get PDF
    We present a novel approach to simulate drug application to the inner ear of the guinea pig with the goal to reduce animal experiments and to increase the accuracy of measurements. The framework is based on a tetrahedral grid representing the individual compartments of the cochlea, associated with a finite element model used to simulate medical diffusion and clearance. In a first simulation scenario, we were able to compute transfer coefficients between the inner compartments of the ear, validating experiments from the literature, and to prove the existence of clearance at the inner scala tympani. In a second scenario, the cochlea was unwound to obtain a one-dimensional model for efficient simulation-based transfer coefficient identification. These coefficients are useful to predict the impact of novel medication application systems
    • …
    corecore