35 research outputs found
Incidence and prognosis of dysnatraemia in critically ill patients: Analysis of a large prevalence study
Background: The objective of this study is to assess the impact of dysnatraemia on mortality among intensive care unit (ICU) patients in a large, international cohort. Material and methods: Analysis of the Extended Prevalence of Infection in Intensive Care (EPIC II) study, a 1-day (8 May 2007) worldwide multicenter, prospective point prevalence study. Hyponatraemia was categorized as mild (130-134 mM/L), moderate (125-129 mM/L) or severe ( 155 mM/L). Patients with normal serum sodium (135-145 mM/L) constituted the reference group. The main outcome was hospital mortality. Analysis was conducted separately for patients admitted on the study day (25·8%) and those already present on the ICU (74·2%). Results: Serum sodium was measured in 13 276 of the 13 796 patients (96·2%). A total of 3815 patients (28·7%) had dysnatraemia: 12·9% with hyponatraemia and 15·8% with hypernatraemia. The prevalence of dysnatraemia was significantly greater in patients already present on the ICU prior to the study day than for those just admitted (13·1% vs. 12·3% for hyponatraemia and 17·1% vs. 12·1% for hypernatraemia, both P < 0·001). Hospital mortality rates were higher in patients with dysnatraemia than in those with normal sodium levels and were directly related to the severity of hypo- and hypernatraemia. This association between dysnatraemia and mortality was similar in infected and noninfected patients (P = 0·061). Conclusions: Dysnatraemia is more frequent during the ICU stay than on the day of admission. Dysnatraemia in the ICU - even mild - is an independent predictor of increased hospital mortality
Trait-based ecology at large scales: Assessing functional trait correlations, phylogenetic constraints and spatial variability using open data
The growing use of functional traits in ecological research has brought new insights into biodiversity responses to global environmental change. However, further progress depends on overcoming three major challenges involving (a) statistical correlations between traits, (b) phylogenetic constraints on the combination of traits possessed by any single species, and (c) spatial effects on trait structure and trait–environment relationships. Here, we introduce a new framework for quantifying trait correlations, phylogenetic constraints and spatial variability at large scales by combining openly available species’ trait, occurrence and phylogenetic data with gridded, high‐resolution environmental layers and computational modelling. Our approach is suitable for use among a wide range of taxonomic groups inhabiting terrestrial, marine and freshwater habitats. We demonstrate its application using freshwater macroinvertebrate data from 35 countries in Europe. We identified a subset of available macroinvertebrate traits, corresponding to a life‐history model with axes of resistance, resilience and resource use, as relatively unaffected by correlations and phylogenetic constraints. Trait structure responded more consistently to environmental variation than taxonomic structure, regardless of location. A re‐analysis of existing data on macroinvertebrate communities of European alpine streams supported this conclusion, and demonstrated that occurrence‐based functional diversity indices are highly sensitive to the traits included in their calculation. Overall, our findings suggest that the search for quantitative trait–environment relationships using single traits or simple combinations of multiple traits is unlikely to be productive. Instead, there is a need to embrace the value of conceptual frameworks linking community responses to environmental change via traits which correspond to the axes of life‐history models. Through a novel integration of tools and databases, our flexible framework can address this need
Recommended from our members
Femtosecond Operation of the LCLS for User Experiments
In addition to its normal operation at 250pC, the LCLS has operated with 20pC bunches delivering X-ray beams to users with energies between 800eV and 2 keV and with bunch lengths below 10 fs FWHM. A bunch arrival time monitor and timing transmission system provide users with sub 50 fs synchronization between a laser and the X-rays for pump/probe experiments. We describe the performance and operational experience of the LCLS for short bunch experiments
Plants in aquatic ecosystems: current trends and future directions
Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International Symposium on Aquatic Plants, held in Edinburgh in September 2015, brought together 120 delegates from 28 countries and six continents. This special issue of Hydrobiologia includes a select number of papers on aspects of aquatic plants, covering a wide range of species, systems and issues. In this paper we present an overview of current trends and future directions in aquatic plant research in the early 21st century. Our understanding of aquatic plant biology, the range of scientific issues being addressed and the range of techniques available to researchers have all arguably never been greater; however, substantial challenges exist to the conservation and management of both aquatic plants and the ecosystems in which they are found. The range of countries and continents represented by conference delegates and authors of papers in the special issue illustrate the global relevance of aquatic plant research in the early 21st century but also the many challenges that this burgeoning scientific discipline must address
Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets
This study was supported by The Royal Society Research Grant RG130789 awarded to HD, as well as by a University of Aberdeen Centre for Genome-Enabled Biology and Medicine PhD studentship and Marine Alliance for Science and Technology for Scotland (MASTS) research grant SG363 awarded to AKR.Peer reviewedPublisher PD
Etude de l'inactivation des canaux calciques de type T (l'inactivation lente de l'isotype CaV3.1)
PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
Incidence and prognosis of dysnatraemia in critically ill patients: analysis of a large prevalence study.
The objective of this study is to assess the impact of dysnatraemia on mortality among intensive care unit (ICU) patients in a large, international cohort.Journal ArticleFLWINSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Magnetotelluric investigations in the Ubaye seismic swarm region, Western Alps: a connection between electrical conductivity, fluids, and earthquakes?
International audienceThe Ubaye Region is a seismically active region in the Western Alps (France), regularly struck by seismic swarms characterized by a high number of small to moderate earthquakes, such as in 2003–2004 or 2012–2015. While some earthquakes could be associated with known faults, the character of the observations (high seismicity – low deformation rate) requires complex driving processes beyond local or regional tectonics. Most conceptual models involve fluids present down to depths of several km, and/or long-range transport.Magnetotellurics (MT) is known to be an efficient imaging method sensitive to crustal fluids. During 2020/21, a data set of 30 MT sites was acquired, covering a signal period ranging between 10-4 to 104 s, with generally all 5 components measured. Data quality was generally satisfactory up to 3 s and sometimes up to 100 s. Major problems were related to topography (including logistics), and to the presence of electromagnetic noise, only to be mitigated by advanced processing methods (FFMT). For the 3-D inversion required by the data (phase tensors, WAL, topography), we have chosen a joint inversion of induction vectors, phase tensors and off-diagonal impedances (previously corrected for static shift with help of phase tensor inversion). This allowed us to obtain the best 3-D model using the ModEM inversion code, explaining all three data types reasonably well.The main findings from this investigation include (a) a prominent conductor (down to 20 Ωm) located along the axis of the swarm zone, though generally above it; (b) a regional dominance of the Penninic Front in the East and the overridden Mesozoic (Dauphinoise) sediments in the West, both not fully covered by the current survey; (c) strike directions that agree well with most of the mapped faults and focal mechanisms of the strongest seismic events.Uncertainties associated with the insufficient data coverage in some of the most interesting zones were studied by analysing the sensitivities provided by the inversion and direct forward modelling of significant model features. In general, this led to the conclusion that our sensitivity does reach the border of the seismic swarm activity, but does not cover its depth extent. Due to the gap in data in the central area of interest, the geometry and connectivity of the main conductor remains a hypothesis. Thus, a truly quantitative characterization of prominent identified structures is not currently possible and should be better assessed with additional measurement sites. The different conceptual models proposed for the origin of the seismic swarm activity will be discussed in the light of the MT imaging, and the associated uncertainties
Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERBα
The nuclear receptors are transcription factors involved in the regulation of a variety of physiological processes whose activity can be modulated by binding to relevant small molecule ligands. Their dysfunction has been shown to play a role in disease states such as diabetes, cancer, inflammatory diseases, and hormonal resistance ailments, which makes them interesting targets for drug discovery. The nuclear receptor REV-ERBα is involved in regulating the circadian rhythm and metabolism. Its natural ligand is heme and there is significant interest in identifying novel synthetic modulators to serve as tools to characterize its function and to serve as drugs in treating metabolic disorders. To do so, we established a mammalian cell-based two-hybrid assay system capable of measuring the interaction between REV-ERBα and its co-repressor, nuclear co-repressor 1. This assay was validated to industry standard criteria and was used to screen a subset of the LOPAC®1280 library and 29568 compounds from a diverse compound library. Profiling of the primary hits in a panel of counter and selectivity assays confirmed that REV-ERBα activity can be modulated pharmacologically and chemical scaffolds have been identified for optimization