201 research outputs found
Risk Assessment of Carbon Fiber Composite in Surface Transportation
The vulnerability of surface transportation to airborne carbon fibers and the national risk associated with the potential use of carbon fibers in the surface transportation system were evaluated. Results show airborne carbon fibers may cause failure rates in surface transportation of less than one per year by 1995. The national risk resulting from the use of carbon fibers in the surface transportation system is discussed
Recommended from our members
Direct iminization of PEEK
Semi-crystalline poly(ether ketone)s are important high-temperature engineering thermoplastics, but are difficult to characterize at the molecular level because of their insolubility in conventional organic solvents. Here we report that polymers of this type, including PEEK, react cleanly at high temperatures with low-volatility aralkyl amines to afford stable, noncrystalline poly(ether-imine)s, which are readily soluble in solvents such as chloroform, THF and DMF and so characterizable by conventional size-exclusion chromatography
Charge Transport Processes in a Superconducting Single-Electron Transistor Coupled to a Microstrip Transmission Line
We have investigated charge transport processes in a superconducting
single-electron transistor (S-SET) fabricated in close proximity to a
two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. The
macroscopic bonding pads of the S-SET along with the 2DEG form a microstrip
transmission line. We observe a variety of current-carrying cycles in the S-SET
which we attribute to simultaneous tunneling of Cooper pairs and emission of
photons into the microstrip. We find good agreement between these experimental
results and simulations including both photon emission and photon-assisted
tunneling due to the electromagnetic environment.Comment: 4 pages, 4 figures, REVTeX
Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu
The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's
New Frontiers Program and is the first U.S. mission to return samples from an
asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is
the selection of a prime sample-site on the surface of asteroid (101955) Bennu.
Mission success hinges on identifying a site that is safe and has regolith that
can readily be ingested by the spacecraft's sampling mechanism. To inform this
mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx
Camera Suite and the images are used to develop several foundational data
products. Acquiring the necessary inputs to these data products requires
observational strategies that are defined specifically to overcome the
challenges associated with mapping a small irregular body. We present these
strategies in the context of assessing candidate sample-sites at Bennu
according to a framework of decisions regarding the relative safety,
sampleability, and scientific value across the asteroid's surface. To create
data products that aid these assessments, we describe the best practices
developed by the OSIRIS-REx team for image-based mapping of irregular small
bodies. We emphasize the importance of using 3D shape models and the ability to
work in body-fixed rectangular coordinates when dealing with planetary surfaces
that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table
An All-Cryogenic THz Transmission Spectrometer
This paper describes a THz transmission spectrometer for the spectral range
of 2-65 cm^-1 (100 GHz to 2 THz) with a spectral resolution of at least 1.8
cm^-1 (50 GHz) where the source, sample, and detector are all fully contained
in a cryogenic environment. Cyclotron emission from a two-dimensional electron
gas heated with an electrical current serves as a magnetic field tunable
source. The spectrometer is demonstrated at 4.2 K by measuring the resonant
cyclotron absorption of a second two dimensional electron gas. Unique aspects
of the spectrometer are that 1) an ultra-broadband detector is used and 2) the
emitter is run quasi-continuously with a chopping frequency of only 1 Hz. Since
optical coupling to room temperature components is not necessary, this
technique is compatible with ultra-low temperature (sub 100 mK) operation.Comment: 7 pages, 5 figures. Author affiliation and funding acknowledgements
clarifie
The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations
During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s(-1) averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 +/- 0.52 x 10(-6) degrees day(-2), likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.This material is based upon work supported by NASA under Contract NNM10AA11C
issued through the New Frontiers Program. This work made use of sbpy (http://sbpy.
org), a community-driven Python package for small-body planetary astronomy supported by NASA PDART Grant No. 80NSSC18K0987. A portion of this research was
carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. M.A.B. and S.F.
acknowledge financial support from CNES
Recommended from our members
Overcoming the Challenges Associated with Image-Based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu
The OSIRISâREx Asteroid Sample Return Mission is the third mission in National Aeronautics and Space Administration (NASA)'s New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRISâREx team is the selection of a prime sampleâsite on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this missionâcritical decision, the surface of Bennu is mapped using the OSIRISâREx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRISâREx team for imageâbased mapping of irregular small bodies. We emphasize the importance of using 3âD shape models and the ability to work in bodyâfixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by bodyâfixed latitude and longitude.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Ground and In-Flight Calibration of the OSIRIS-REx Camera Suite
The OSIRIS-REx Camera Suite (OCAMS) onboard the OSIRIS-REx spacecraft is used to study the shape and surface of the missionâs target, asteroid (101955) Bennu, in support of the selection of a sampling site. We present calibration methods and results for the three OCAMS camerasâMapCam, PolyCam, and SamCamâusing data from pre-flight and in-flight calibration campaigns. Pre-flight calibrations established a baseline for a variety of camera properties, including bias and dark behavior, flat fields, stray light, and radiometric calibration. In-flight activities updated these calibrations where possible, allowing us to confidently measure Bennuâs surface. Accurate calibration is critical not only for establishing a global understanding of Bennu, but also for enabling analyses of potential sampling locations and for providing scientific context for the returned sample
The Type Ia Supernova 1998bu in M96 and the Hubble Constant
We present optical and near-infrared photometry and spectroscopy of the type Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The data set consists of 356 photometric measurements and 29 spectra of SN 1998bu between UT 1998 May 11 and July 15. The well-sampled light curve indicates the supernova reached maximum light in B on UT 1998 May 19.3 (JD 2450952.8 +/- 0.8) with B = 12.22 +/- 0.03 and V = 11.88 +/- 0.02. Application of a revised version of the Multicolor Light Curve Shape (MLCS) method yields an extinction toward the supernova of A_V = 0.94 +/- 0.15 mag, and indicates the supernova was of average luminosity compared to other normal type Ia supernovae. Using the HST Cepheid distance modulus to M96 (Tanvir et al. 1995) and the MLCS fit parameters for the supernova, we derive an extinction-corrected absolute magnitude for SN 1998bu at maximum, M_V = -19.42 +/- 0.22. Our independent results for this supernova are consistent with those of Suntzeff et al. (1999). Combining SN 1998bu with three other well-observed local calibrators and 42 supernovae in the Hubble flow yields a Hubble constant, H_0 = 64^{+8}_{-6} km/s/Mpc, where the error estimate incorporates possible sources of systematic uncertainty including the calibration of the Cepheid period-luminosity relation, the metallicity dependence of the Cepheid distance scale, and the distance to the LMC
Immunohistochemical Characterization of Procaspase-3 Overexpression as a Druggable Target With PAC-1, a Procaspase-3 Activator, in Canine and Human Brain Cancers
Gliomas and meningiomas are the most common brain neoplasms affecting both humans and canines, and identifying druggable targets conserved across multiple brain cancer histologies and comparative species could broadly improve treatment outcomes. While satisfactory cure rates for low grade, non-invasive brain cancers are achievable with conventional therapies including surgery and radiation, the management of non-resectable or recurrent brain tumors remains problematic and necessitates the discovery of novel therapies that could be accelerated through a comparative approach, such as the inclusion of pet dogs with naturally-occurring brain cancers. Evidence supports procaspase-3 as a druggable brain cancer target with PAC-1, a pro-apoptotic, small molecule activator of procaspase-3 that crosses the blood-brain barrier. Procaspase-3 is frequently overexpressed in malignantly transformed tissues and provides a preferential target for inducing cancer cell apoptosis. While preliminary evidence supports procaspase-3 as a viable target in preclinical models, with PAC-1 demonstrating activity in rodent models and dogs with spontaneous brain tumors, the broader applicability of procaspase-3 as a target in human brain cancers, as well as the comparability of procaspase-3 expressions between differing species, requires further investigation. As such, a large-scale validation of procaspase-3 as a druggable target was undertaken across 651 human and canine brain tumors. Relative to normal brain tissues, procaspase-3 was overexpressed in histologically diverse cancerous brain tissues, supporting procaspase-3 as a broad and conserved therapeutic target. Additionally, procaspase-3 expressing glioma and meningioma cell lines were sensitive to the apoptotic effects of PAC-1 at biologically relevant exposures achievable in cancer patients. Importantly, the clinical relevance of procaspase-3 as a potential prognostic variable was demonstrated in human astrocytomas of variable histologic grades and associated clinical outcomes, whereby tumoral procaspase-3 expression was negatively correlated with survival; findings which suggest that PAC-1 might provide the greatest benefit for patients with the most guarded prognoses
- âŠ