15 research outputs found

    Role of Flagella in Host Cell Invasion by Burkholderia cepacia

    No full text
    Burkholderia cepacia is an important opportunistic human pathogen that affects immunocompromised individuals, particularly cystic fibrosis (CF) patients. Colonization of the lungs of a CF patient by B. cepacia can lead not only to a decline in respiratory function but also to an acute systemic infection, such as bacteremia. We have previously demonstrated that a CF clinical isolate of B. cepacia, strain J2315, can invade and survive within cultured respiratory epithelial cells. In order to further characterize the mechanisms of invasion of B. cepacia, we screened a transposon-generated mutant library of strain J2315 for mutants defective in invasion of A549 respiratory epithelial cells. Here we describe isolation and characterization of a nonmotile mutant of B. cepacia with reduced invasiveness due to disruption of fliG, which encodes a component of the motor-switch complex of the flagellar basal body. We also found that a defined null mutation in fliI, a gene encoding a highly conserved ATPase required for protein translocation via the flagellar type III secretion system, also resulted in loss of motility and a significant reduction in invasion. Both mutants lacked detectable intracellular flagellin and failed to export detectable amounts of flagellin into culture supernatants, suggesting that disruption of fliG and fliI impaired flagellar biogenesis. The reduction in invasion did not appear to be due to defective adherence of the flagellar mutants to A549 cells, suggesting that functional flagella and motility are required for full invasiveness of B. cepacia. Our findings indicate that flagellum-mediated motility may facilitate penetration of host epithelial barriers by B. cepacia, contributing to establishment of infection and systemic spread of the organism

    Attenuated Virulence of a Burkholderia cepacia Type III Secretion Mutant in a Murine Model of Infection

    No full text
    Type III secretion systems are utilized by a number of gram-negative bacterial pathogens to deliver virulence-associated proteins into host cells. Using a PCR-based approach, we identified homologs of type III secretion genes in the gram-negative bacterium Burkholderia cepacia, an important pulmonary pathogen in immunocompromised patients and patients with cystic fibrosis. One of the genes, designated bscN, encodes a member of a family of ATP-binding proteins believed to generate energy driving virulence protein secretion. Genetic dissection of the regions flanking the bscN gene revealed a locus consisting of at least 10 open reading frames, predicted to encode products with significant homology to known type III secretion proteins in other bacteria. A defined null mutation was generated in the bscN gene, and the null strain and wild-type parent strain were examined by use of a murine model of B. cepacia infection. Quantitative bacteriological analysis of the lungs and spleens of infected C57BL/6 mice revealed that the bscN null strain was attenuated in virulence compared to the parent strain, with significantly lower bacterial recovery from the lungs and spleens at 3 days postinfection. Moreover, histopathological changes, including an inflammatory cell infiltrate, were more pronounced in the lungs of mice infected with the wild-type parent strain than in those of mice infected with the isogenic bscN mutant. These results implicate type III secretion as an important determinant in the pathogenesis of B. cepacia

    The SaeRS two-component system is a direct and dominant transcriptional activator of toxic shock syndrome toxin 1 in Staphylococcus aureus

    No full text
    Toxic shock syndrome toxin 1 (TSST-1) is a Staphylococcus aureus superantigen that has been implicated in both menstrual and nonmenstrual toxic shock syndrome (TSS). Despite the important role of TSST-1 in severe human disease, a comprehensive understanding of staphylococcal regulatory factors that control TSST-1 expression remains incomplete. The S. aureus exotoxin expression (Sae) operon contains a well-characterized two-component system that regulates a number of important exotoxins in S. aureus, although regulation of TSST-1 by the Sae system has not been investigated. We generated a defined deletion mutant of the Sae histidine kinase sensor (saeS) in the prototypic menstrual TSS strain S. aureus MN8. Mutation of saeS resulted in a complete loss of TSST-1 expression. Using both luciferase reporter experiments and quantitative real-time PCR, we demonstrate that the Sae system is an important transcriptional activator of TSST-1 expression. Recombinant SaeR was able to bind directly to the tst promoter to a region containing two SaeR consensus binding sites. Although the stand-alone SarA transcriptional regulator has been shown to be both a positive and a negative regulator of TSST-1, deletion of sarA in S. aureus MN8 resulted in a dramatic overexpression of TSST-1. As expected, mutation of agr also reduced TSST-1 expression, but this phenotype appeared to be independent of Sae. A double mutation of saeS and sarA resulted in the loss of TSST-1 expression. This work indicates that the Sae system is a dominant and direct transcriptional activator that is required for expression of TSST-1

    Molecular Basis of TCR Selectivity, Cross-Reactivity, and Allelic Discrimination by a Bacterial Superantigen: Integrative Functional and Energetic Mapping of the SpeC-Vbeta2.1 Molecular Interface

    No full text
    Superantigens activate large fractions of T cells through unconventional interactions with both TCR beta-chain V domains (Vbetas) and MHC class II molecules. The bacterial superantigen streptococcal pyrogenic exotoxin C (SpeC) primarily stimulates human Vbeta2(+) T cells. Herein, we have analyzed the SpeC-Vbeta2.1 interaction by mutating all SpeC residues that make contact with Vbeta2.1 and have determined the energetic and functional consequences of these mutations. Our comprehensive approach, including mutagenesis, functional readouts from both bulk T cell populations, and an engineered Vbeta2.1(+) Jurkat T cell, as well as surface plasmon resonance binding analysis, has defined the SpeC functional epitope for TCR engagement. Although only two SpeC residues (Tyr(15) and Arg(181)) are critical for activation of virtually all human CD3(+) T cells, a larger cluster of four hot spot residues are required for interaction with Vbeta2.1. Three of these residues (Tyr(15), Phe(75), and Arg(181)) concentrate their binding energy on the CDR2 loop residue Ser(52a), a noncanonical residue insertion found only in Vbeta2 and Vbeta4 chains. Plasticity of this loop is important for recognition by SpeC. Although SpeC interacts with the Vbeta2.1 hypervariable CDR3 loop, our data indicate these contacts have little to no influence on the functional interaction with Vbeta2.1. These studies also provide a molecular basis for selectivity and cross-reactivity of SpeC-TCR recognition and reveal a degree of fine specificity in these interactions, whereby certain SpeC mutants are capable of distinguishing between different alleles of the same Vbeta domain subfamily

    Crystal Structure of the Streptococcal Superantigen SpeI and Functional Role of a Novel Loop Domain in T Cell Activation by Group V Superantigens

    No full text
    Superantigens (SAgs) are potent microbial toxins that bind simultaneously to T cell receptors (TCRs) and class II major histocompatibility complex molecules, resulting in the activation and expansion of large T cell subsets and the onset of numerous human diseases. Within the bacterial SAg family, streptococcal pyrogenic exotoxin I (SpeI) has been classified as belonging to the group V SAg subclass, which are characterized by a unique, relatively conserved approximately 15 amino acid extension (amino acid residues 154 to 170 in SpeI; herein referred to as the alpha3-beta8 loop), absent in SAg groups I through IV. Here, we report the crystal structure of SpeI at 1.56 A resolution. Although the alpha3-beta8 loop in SpeI is several residues shorter than that of another group V SAg, staphylococcal enterotoxin serotype I, the C-terminal portions of these loops, which are located adjacent to the putative TCR binding site, are structurally similar. Mutagenesis and subsequent functional analysis of SpeI indicates that TCR beta-chains are likely engaged in a similar general orientation as other characterized SAgs. We show, however, that the alpha3-beta8 loop length, and the presence of key glycine residues, are necessary for optimal activation of T cells. Based on Vbeta-skewing analysis of human T cells activated with SpeI and structural models, we propose that the alpha3-beta8 loop is positioned to form productive intermolecular contacts with the TCR beta-chain, likely in framework region 3, and that these contacts are required for optimal TCR recognition by SpeI, and likely all other group V SAgs

    Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome

    No full text
    Type 2 congenital long QT syndrome (LQT-2) is linked to mutations in the human ether a-go-go–related gene (HERG) and is characterized by rate-corrected QT interval (QTc) prolongation, ventricular arrhythmias, syncope, and sudden death. Recognized triggers of these cardiac events include emotional and acoustic stimuli. Here we investigated the repeated occurrence of fever-induced polymorphic ventricular tachycardia and ventricular fibrillation in 2 LQT-2 patients with A558P missense mutation in HERG. ECG analysis showed increased QTc with fever in both patients. WT, A558P, and WT+A558P HERG were expressed heterologously in HEK293 cells and were studied using biochemical and electrophysiological techniques. A558P proteins showed a trafficking-deficient phenotype. WT+A558P coexpression caused a dominant-negative effect, selectively accelerated the rate of channel inactivation, and reduced the temperature-dependent increase in the WT current. Thus, the WT+A558P current did not increase to the same extent as the WT current, leading to larger current density differences at higher temperatures. A similar temperature-dependent phenotype was seen for coexpression of the trafficking-deficient LQT-2 F640V mutation. We postulate that the weak increase in the HERG current density in WT-mutant coassembled channels contributes to the development of QTc prolongation and arrhythmias at febrile temperatures and suggest that fever is a potential trigger of life-threatening arrhythmias in LQT-2 patients
    corecore