80 research outputs found
Low-noise rotating sample holder for ultrafast transient spectroscopy at cryogenic temperatures\ud
We present the design and testing of a rotating device that fits within a commercial helium cryostat and is capable of providing at 4 K a fresh sample surface for subsequent shots of a 1–10 kHz amplified pulsed laser. We benchmark this rotator in a transient-absorption experiment on molecular switches. After showing that the device introduces only a small amount of additional noise, we demonstrate how the effect of signal degradation due to high fluence is completely resolve
Background free CARS imaging by phase sensitive heterodyne CARS
In this article we show that heterodyne CARS, based on a controlled and stable phase-preserving chain, can be used to measure amplitude and phase information of molecular vibration modes. The technique is validated by a comparison of the imaginary part of the heterodyne CARS spectrum to the spontaneous Raman spectrum of polyethylene. The detection of the phase allows for rejection of the non-resonant background from the data. The resulting improvement of the signal to noise ratio is shown by measurements on a sample containing lipid
Probing the origin of fluorescence quenching of graphene-porphyrin hybrid material
We report transient absorption spectroscopic studies on the hybrid material composed of porphyrin molecules covalently attached to graphene for investigating the mechanism underlying the reported fluorescence quenching of porphyrin in the hybrid [1]. Excited state dynamics of pure graphene suspension and porphyrin have also been studied as reference samples. A fast excited state decay was observed in the hybrid
Application of spectral phase shaping to high resolution CARS spectroscopy
By spectral phase shaping of both the pump and probe pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy we demonstrate the extraction of the frequencies, bandwidths and relative cross sections of vibrational lines. We employ a tunable broadband Ti:Sapphire laser synchronized to a ps-Nd:YVO mode locked laser. A high resolution spectral phase shaper allows for spectroscopy with a precision better than 1 cm-1 in the high frequency region around 3000 cm-1. We also demonstrate how new spectral phase shaping strategies can amplify the resonant features of isolated vibrations to such an extent that spectroscopy and microscopy can be done at high resolution, on the integrated spectral response without the need for a spectrograph
Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution
Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate
Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope
We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air interfac
In-chip direct laser writing of a centimeter-scale acoustic micromixer
A centimeter-scale micromixer was fabricated by two-photon polymerization inside a closed microchannel using direct laser writing. The structure consists of a repeating pattern of 20  μm×20  μm×155  μm acrylate pillars and extends over 1.2 cm. Using external ultrasonic actuation, the micropillars locally induce streaming with flow speeds of 30  μm s −1 . The fabrication method allows for large flexibility and more complex design
Imaging Local Acoustic Pressure in Microchannels
A method for determining the spatially resolved acoustic field inside a water-filled microchannel is presented. The acoustic field, both amplitude and phase, is determined by measuring the change of the index of refraction of the water due to local pressure using stroboscopic illumination. Pressure distributions are measured for the fundamental pressure resonance in the water and two higher harmonic modes. By combining measurement at a range of excitation frequencies, a frequency map of modes is made, from which the spectral line width an
- …