24 research outputs found

    Real-Time Navigation for Bipedal Robots in Dynamic Environments

    Full text link
    The popularity of mobile robots has been steadily growing, with these robots being increasingly utilized to execute tasks previously completed by human workers. For bipedal robots to see this same success, robust autonomous navigation systems need to be developed that can execute in real-time and respond to dynamic environments. These systems can be divided into three stages: perception, planning, and control. A holistic navigation framework for bipedal robots must successfully integrate all three components of the autonomous navigation problem to enable robust real-world navigation. In this paper, we present a real-time navigation framework for bipedal robots in dynamic environments. The proposed system addresses all components of the navigation problem: We introduce a depth-based perception system for obstacle detection, mapping, and localization. A two-stage planner is developed to generate collision-free trajectories robust to unknown and dynamic environments. And execute trajectories on the Digit bipedal robot's walking gait controller. The navigation framework is validated through a series of simulation and hardware experiments that contain unknown environments and dynamic obstacles.Comment: Submitted to 2023 IEEE International Conference on Robotics and Automation (ICRA). For associated experiment recordings see https://www.youtube.com/watch?v=WzHejHx-Kz

    Rethink the Adversarial Scenario-based Safety Testing of Robots: the Comparability and Optimal Aggressiveness

    Full text link
    This paper studies the class of scenario-based safety testing algorithms in the black-box safety testing configuration. For algorithms sharing the same state-action set coverage with different sampling distributions, it is commonly believed that prioritizing the exploration of high-risk state-actions leads to a better sampling efficiency. Our proposal disputes the above intuition by introducing an impossibility theorem that provably shows all safety testing algorithms of the aforementioned difference perform equally well with the same expected sampling efficiency. Moreover, for testing algorithms covering different sets of state-actions, the sampling efficiency criterion is no longer applicable as different algorithms do not necessarily converge to the same termination condition. We then propose a testing aggressiveness definition based on the almost safe set concept along with an unbiased and efficient algorithm that compares the aggressiveness between testing algorithms. Empirical observations from the safety testing of bipedal locomotion controllers and vehicle decision-making modules are also presented to support the proposed theoretical implications and methodologies

    Towards Standardized Disturbance Rejection Testing of Legged Robot Locomotion with Linear Impactor: A Preliminary Study, Observations, and Implications

    Full text link
    Dynamic locomotion in legged robots is close to industrial collaboration, but a lack of standardized testing obstructs commercialization. The issues are not merely political, theoretical, or algorithmic but also physical, indicating limited studies and comprehension regarding standard testing infrastructure and equipment. For decades, the approaches we have been testing legged robots were rarely standardizable with hand-pushing, foot-kicking, rope-dragging, stick-poking, and ball-swinging. This paper aims to bridge the gap by proposing the use of the linear impactor, a well-established tool in other standardized testing disciplines, to serve as an adaptive, repeatable, and fair disturbance rejection testing equipment for legged robots. A pneumatic linear impactor is also adopted for the case study involving the humanoid robot Digit. Three locomotion controllers are examined, including a commercial one, using a walking-in-place task against frontal impacts. The statistically best controller was able to withstand the impact momentum (26.376 kg\cdotm/s) on par with a reported average effective momentum from straight punches by Olympic boxers (26.506 kg\cdotm/s). Moreover, the case study highlights other anti-intuitive observations, demonstrations, and implications that, to the best of the authors' knowledge, are first-of-its-kind revealed in real-world testing of legged robots.Comment: A modified version of this preprint has been accepted at IEEE International Conference on Robotics and Automation (ICRA) 202

    On Safety Testing, Validation, and Characterization with Scenario-Sampling: A Case Study of Legged Robots

    Full text link
    The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature

    Realizing Dynamic and Efficient Bipedal Locomotion on the Humanoid Robot DURUS

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/ICRA.2016.7487325This paper presents the methodology used to achieve efficient and dynamic walking behaviors on the prototype humanoid robotics platform, DURUS. As a means of providing a hardware platform capable of these behaviors, the design of DURUS combines highly efficient electromechanical components with “control in the loop” design of the leg morphology. Utilizing the final design of DURUS, a formal framework for the generation of dynamic walking gaits which maximizes efficiency by exploiting the full body dynamics of the robot, including the interplay between the passive and active elements, is developed. The gaits generated through this methodology form the basis of the control implementation experimentally realized on DURUS; in particular, the trajectories generated through the formal framework yield a feedforward control input which is modulated by feedback in the form of regulators that compensate for discrepancies between the model and physical system. The end result of the unified approach to control-informed mechanical design, formal gait design and regulator-based feedback control implementation is efficient and dynamic locomotion on the humanoid robot DURUS. In particular, DURUS was able to demonstrate dynamic locomotion at the DRC Finals Endurance Test, walking for just under five hours in a single day, traveling 3.9 km with a mean cost of transport of 1.61-the lowest reported cost of transport achieved on a bipedal humanoid robot

    Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization

    No full text
    Hybrid zero dynamics (HZD) has emerged as a popular framework for dynamic walking but has significant implementation difficulties when applied to the high degrees of freedom humanoids. The primary impediment is the process of gait design—it is difficult for optimizers to converge on a viable set of virtual constraints defining a gait. This paper presents a methodology that allows for fast and reliable generation of dynamic robotic walking gaits through the HZD framework, even in the presence of underactuation. Specifically, we describe an optimization formulation that builds upon the novel combination of HZD and direct collocation methods. Furthermore, achieving a scalable implementation required developing a defect-variable substitution formulation to simplify expressions, which ultimately allows us to generate compact analytic Jacobians of the constraints. We experimentally validate our methodology on an underactuated humanoid, DURUS, a spring-legged machine designed to facilitate energy-economical walking. We show that the optimization approach, in concert with the HZD framework, yields dynamic and stable walking gaits in hardware with a total electrical cost of transport of 1.33

    3D Dynamic Walking with Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/ICRA.2016.7487279Hybrid zero dynamics (HZD) has emerged as a popular framework for dynamic and underactuated bipedal walking, but has significant implementation difficulties when applied to the high degrees of freedom present in humanoid robots. The primary impediment is the process of gait design– it is difficult for optimizers to converge on a viable set of virtual constraints defining a gait. This paper presents a methodology that allows for the fast and reliable generation of efficient multi-contact robotic walking gaits through the framework of HZD, even in the presence of underactuation. To achieve this goal, we unify methods from trajectory optimization with the control framework of multi-domain hybrid zero dynamics. By formulating a novel optimization problem in the context of direct collocation and generating analytic Jacobians for the constraints, solving the resulting nonlinear program becomes tractable for large-scale nonlinear programming solvers, even for systems as high-dimensional as humanoid robots. We experimentally validated our methodology on the spring-legged prototype humanoid, DURUS, showing that the optimization approach yields dynamic and stable 3D walking gaits
    corecore