128 research outputs found
Light-induced photoisomerization of a diarylethene molecular switch on solidsurfaces
Diarylethenes are molecular switches, the state of which can efficiently be
controlled by illumination with ultraviolet or visible light. To use the
change in the molecular properties when switching between the two states for a
specific function, direct contact with solid surfaces is advantageous as it
provides immobilization. Here we present a study of a diarylethene derivate
(T-DAE, 1,2-bis(5-methyl-2-phenylthiazol-4-yl)cyclopent-1-ene) in direct
contact with highly ordered graphite as well as with semimetallic Bi(1 1 1)
surfaces by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy
and simulated spectra based on density functional theory. On both surfaces,
the molecule can be switched from its open to its closed form by 325–475 nm
broadband or ultraviolet illumination. On the other hand, back isomerization
to the ring-open T-DAE was not possible
Regional differences of macrovascular disease in Northeast and South Germany: the population-based SHIP-TREND and KORA-F4 studies
Abstract Background Previous studies found regional differences in the prevalence and incidence of type 2 diabetes between Northeast and South of Germany. The aim of this study was to investigate if regional variations are also present for macrovascular disease in people with type 2 diabetes and in the general population. A further aim was to investigate if traditional risk factors of macrovascular complications can explain these regional variations. Methods Data of persons aged 30–79 from two regional population-based studies, SHIP-TREND (Northeast Germany, 2008–2012, n = 2539) and KORA-F4 (South Germany, 2006–2008, n = 2932), were analysed. Macrovascular disease was defined by self-reported previous myocardial infarction, stroke or coronary angiography. Multivariable logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (CI) for prevalence of macrovascular disease in persons with type 2 diabetes and in the general population. Results The prevalence of macrovascular disease in persons with type 2 diabetes and in the general population was considerably higher in the Northeast (SHIP-TREND: 32.8 and 12.0%) than in the South of Germany (KORA-F4: 24.9 and 8.8%), respectively. The odds of macrovascular disease in persons with type 2 diabetes was 1.66 (95% CI: 1.11–2.49) in the Northeast in comparison to the South after adjustment for sex, age, body mass index, hypertension, hyperlipidemia and smoking. In the general population, SHIP-TREND participants also had a significantly increased odds of macrovascular disease compared to KORA-F4 participants (OR = 1.63, 95% CI: 1.33–2.00). After excluding coronary angiography (myocardial infarction or stroke only), the ORs for region decreased in all models, but the difference between SHIP-TREND and KORA-F4 participants was still significant in the age- and sex-adjusted model for the general population (OR = 1.34, 95% CI: 1.01–1.78). Conclusions This study provides an indication for regional differences in macrovascular disease, which is not explained by traditional risk factors. Further examinations of other risk factors, such as regional deprivation or geographical variations in medical care services are needed
Network reconstruction for trans acting genetic loci using multi-omics data and prior information
BACKGROUND: Molecular measurements of the genome, the transcriptome, and the epigenome, often termed multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and use of biological prior information can improve network inference. However, previous efforts were limited in the types of priors used or have only been applied to model systems. In this study, we reconstruct the regulatory networks underlying trans-QTL hotspots using human cohort data and data-driven prior information. METHODS: We devised a new strategy to integrate QTL with human population scale multi-omics data. State-of-the art network inference methods including BDgraph and glasso were applied to these data. Comprehensive prior information to guide network inference was manually curated from large-scale biological databases. The inference approach was extensively benchmarked using simulated data and cross-cohort replication analyses. Best performing methods were subsequently applied to real-world human cohort data. RESULTS: Our benchmarks showed that prior-based strategies outperform methods without prior information in simulated data and show better replication across datasets. Application of our approach to human cohort data highlighted two novel regulatory networks related to schizophrenia and lean body mass for which we generated novel functional hypotheses. CONCLUSIONS: We demonstrate that existing biological knowledge can improve the integrative analysis of networks underlying trans associations and generate novel hypotheses about regulatory mechanisms
Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors
Background:The mTOR-inhibitor everolimus improves progression-free survival in advanced pancreatic neuroendocrine tumours (PNETs). However, adaptive resistance to mTOR inhibition is described.Methods:QGP-1 and BON-1, two human PNET cell lines, were cultured with increasing concentrations of everolimus up to 22 weeks to reach a dose of 1 μM everolimus, respectively, 1000-fold and 250-fold initial IC 50. Using total DNA content as a measure of cell number, growth inhibitory dose-response curves of everolimus were determined at the end of resistance induction and over time after everolimus withdrawal. Response to ATP-competitive mTOR inhibitors OSI-027 and AZD2014, and PI3K-mTOR inhibitor NVP-BEZ235 was studied. Gene expression of 10 PI3K-Akt-mTOR pathway-related genes was evaluated using quantitative real-time PCR (RT-qPCR).Results:Long-term everolimus-treated BON-1/R and QGP-1/R showed a significant reduction in everolimus sensitivity. During a drug holiday, gradual return of everolimus sensitivity in BON-1/R and QGP-1/R led to complete reversal of resistance after 10-12 weeks. Treatment with AZD2014, OSI-027 and NVP-BEZ235 had an inhibitory effect on cell proliferation in both sensitive and resistant cell lines. Gene expression in BON-1/R revealed downregulation of MTOR, RICTOR, RAPTOR, AKT and HIF1A, whereas 4EBP1 was upregulated. In QGP-1/R, a downregulation of HIF1A and an upregulation of ERK2 were observed.Conclusions:Long-term everolimus resistance was induced in two human PNET cell lines. Novel PI3K-AKT-mTOR pathway-targeting drugs can overcome everolimus resistance. Differential gene expression profiles suggest different mechanisms of everolimus resistance in BON-1 and QGP-1
A spatially resolved single-cell lung atlas integrated with clinical and blood signatures distinguishes COVID-19 disease trajectories
COVID-19 is characterized by a broad range of symptoms and disease trajectories. Understanding the correlation between clinical biomarkers and lung pathology during acute COVID-19 is necessary to understand its diverse pathogenesis and inform more effective treatments. Here, we present an integrated analysis of longitudinal clinical parameters, peripheral blood markers, and lung pathology in 142 Brazilian patients hospitalized with COVID-19. We identified core clinical and peripheral blood signatures differentiating disease progression between patients who recovered from severe disease compared with those who succumbed to the disease. Signatures were heterogeneous among fatal cases yet clustered into two patient groups: "early death" (<15 days until death) and "late death" (>15 days). Progression to early death was characterized systemically and in lung histopathological samples by rapid endothelial and myeloid activation and the presence of thrombi associated with SARS-CoV-2+ macrophages. In contrast, progression to late death was associated with fibrosis, apoptosis, and SARS-CoV-2+ epithelial cells in postmortem lung tissue. In late death cases, cytotoxicity, interferon, and T helper 17 (TH17) signatures were only detectable in the peripheral blood after 2 weeks of hospitalization. Progression to recovery was associated with higher lymphocyte counts, TH2 responses, and anti-inflammatory-mediated responses. By integrating antemortem longitudinal blood signatures and spatial single-cell lung signatures from postmortem lung samples, we defined clinical parameters that could be used to help predict COVID-19 outcomes.</p
Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease
Adipose tissue (commonly called body fat) can be found under the
skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease
Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts
Background: Obesity, defined as pathologically increased body mass index (BMI),is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Methods: Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Results: Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Conclusions: Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D
Metabolite ratios as potential biomarkers for type 2 diabetes:a DIRECT study
Aims/hypothesis
Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes.
Methods
We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case–control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders.
Results
There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p
Conclusion/interpretation
In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors.</p
- …