48 research outputs found

    Online Matrix Completion with Side Information

    Get PDF
    We give an online algorithm and prove novel mistake and regret bounds for online binary matrix completion with side information. The mistake bounds we prove are of the form O~(D/γ2)\tilde{O}(D/\gamma^2). The term 1/γ21/\gamma^2 is analogous to the usual margin term in SVM (perceptron) bounds. More specifically, if we assume that there is some factorization of the underlying m×nm \times n matrix into PQ⊺P Q^\intercal where the rows of PP are interpreted as "classifiers" in Rd\mathcal{R}^d and the rows of QQ as "instances" in Rd\mathcal{R}^d, then γ\gamma is the maximum (normalized) margin over all factorizations PQ⊺P Q^\intercal consistent with the observed matrix. The quasi-dimension term DD measures the quality of side information. In the presence of vacuous side information, D=m+nD= m+n. However, if the side information is predictive of the underlying factorization of the matrix, then in an ideal case, D∈O(k+ℓ)D \in O(k + \ell) where kk is the number of distinct row factors and ℓ\ell is the number of distinct column factors. We additionally provide a generalization of our algorithm to the inductive setting. In this setting, we provide an example where the side information is not directly specified in advance. For this example, the quasi-dimension DD is now bounded by O(k2+ℓ2)O(k^2 + \ell^2)

    Improved Regret Bounds for Tracking Experts with Memory

    Get PDF
    We address the problem of sequential prediction with expert advice in a non-stationary environment with long-term memory guarantees in the sense of Bousquet and Warmuth [4]. We give a linear-time algorithm that improves on the best known regret bounds [26]. This algorithm incorporates a relative entropy projection step. This projection is advantageous over previous weight-sharing approaches in that weight updates may come with implicit costs as in for example portfolio optimization. We give an algorithm to compute this projection step in linear time, which may be of independent interest

    On similarity prediction and pairwise clustering

    Get PDF
    We consider the problem of clustering a finite set of items from pairwise similarity information. Unlike what is done in the literature on this subject, we do so in a passive learning setting, and with no specific constraints on the cluster shapes other than their size. We investigate the problem in different settings: i. an online setting, where we provide a tight characterization of the prediction complexity in the mistake bound model, and ii. a standard stochastic batch setting, where we give tight upper and lower bounds on the achievable generalization error. Prediction performance is measured both in terms of the ability to recover the similarity function encoding the hidden clustering and in terms of how well we classify each item within the set. The proposed algorithms are time efficient

    MaxHedge: Maximising a Maximum Online

    Get PDF
    We introduce a new online learning framework where, at each trial, the learner is required to select a subset of actions from a given known action set. Each action is associated with an energy value, a reward and a cost. The sum of the energies of the actions selected cannot exceed a given energy budget. The goal is to maximise the cumulative profit, where the profit obtained on a single trial is defined as the difference between the maximum reward among the selected actions and the sum of their costs. Action energy values and the budget are known and fixed. All rewards and costs associated with each action change over time and are revealed at each trial only after the learner's selection of actions. Our framework encompasses several online learning problems where the environment changes over time; and the solution trades-off between minimising the costs and maximising the maximum reward of the selected subset of actions, while being constrained to an action energy budget. The algorithm that we propose is efficient and general in that it may be specialised to multiple natural online combinatorial problems.Comment: Published in AISTATS 201

    Online Multitask Learning with Long-Term Memory

    Get PDF
    We introduce a novel online multitask setting. In this setting each task is partitioned into a sequence of segments that is unknown to the learner. Associated with each segment is a hypothesis from some hypothesis class. We give algorithms that are designed to exploit the scenario where there are many such segments but significantly fewer associated hypotheses. We prove regret bounds that hold for any segmentation of the tasks and any association of hypotheses to the segments. In the single-task setting this is equivalent to switching with long-term memory in the sense of [Bousquet and Warmuth; 2003]. We provide an algorithm that predicts on each trial in time linear in the number of hypotheses when the hypothesis class is finite. We also consider infinite hypothesis classes from reproducing kernel Hilbert spaces for which we give an algorithm whose per trial time complexity is cubic in the number of cumulative trials. In the single-task special case this is the first example of an efficient regret-bounded switching algorithm with long-term memory for a non-parametric hypothesis class
    corecore