6,922 research outputs found

    Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: mapping to Kardar-Parisi-Zhang universality class

    Full text link
    We show that several aspects of the low-temperature hydrodynamics of a discrete Gross-Pitaevskii equation (GPE) can be understood by mapping it to a nonlinear version of fluctuating hydrodynamics. This is achieved by first writing the GPE in a hydrodynamic form of a continuity and an Euler equation. Respecting conservation laws, dissipation and noise due to the system's chaos are added, thus giving us a nonlinear stochastic field theory in general and the Kardar-Parisi-Zhang (KPZ) equation in our particular case. This mapping to KPZ is benchmarked against exact Hamiltonian numerics on discrete GPE by investigating the non-zero temperature dynamical structure factor and its scaling form and exponent. Given the ubiquity of the Gross-Pitaevskii equation (a.k.a. nonlinear Schrodinger equation), ranging from nonlinear optics to cold gases, we expect this remarkable mapping to the KPZ equation to be of paramount importance and far reaching consequences.Comment: 6 pages, 2 figure

    Diffusive Boundary Layers in the Free-Surface Excitable Medium Spiral

    Full text link
    Spiral waves are a ubiquitous feature of the nonequilibrium dynamics of a great variety of excitable systems. In the limit of a large separation in timescale between fast excitation and slow recovery, one can reduce the spiral problem to one involving the motion of a free surface separating the excited and quiescent phases. In this work, we study the free surface problem in the limit of small diffusivity for the slow field variable. Specifically, we show that a previously found spiral solution in the diffusionless limit can be extended to finite diffusivity, without significant alteration. This extension involves the creation of a variety of boundary layers which cure all the undesirable singularities of the aforementioned solution. The implications of our results for the study of spiral stability are briefly discussed.Comment: 6 pages, submitted to PRE Rapid Com

    Fluctuation Induced Instabilities in Front Propagation up a Co-Moving Reaction Gradient in Two Dimensions

    Full text link
    We study 2D fronts propagating up a co-moving reaction rate gradient in finite number reaction-diffusion systems. We show that in a 2D rectangular channel, planar solutions to the deterministic mean-field equation are stable with respect to deviations from planarity. We argue that planar fronts in the corresponding stochastic system, on the other hand, are unstable if the channel width exceeds a critical value. Furthermore, the velocity of the stochastic fronts is shown to depend on the channel width in a simple and interesting way, in contrast to fronts in the deterministic MFE. Thus, fluctuations alter the behavior of these fronts in an essential way. These affects are shown to be partially captured by introducing a density cutoff in the reaction rate. Some of the predictions of the cutoff mean-field approach are shown to be in quantitative accord with the stochastic results
    • …
    corecore