6,908 research outputs found

    Orbital Launch Operations: Escape Window Analysis

    Get PDF
    The analysis of the gross aspects of the flight mechanics for lunar trajectories from orbital launch is presented. An attempt is made to define the launch requirements from an earth orbit, the geometrical relationships existing between an Orbital Launch Facility in earth orbit and the moon in its orbit, the departure trajectory sensitivity to energy and time requirements, the launch-on-time problem and the orbital "escape window"

    MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    Get PDF
    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized

    Information Visualization Of An Agent-Based Financial System Model

    Get PDF
    This paper considers the application of information visualization techniques to an agent-based model of a financial system. The minority game is a simple agent-based model which can be used to simulate the events in a real-world financial market. To aid understanding of this model, we can apply information visualization techniques. Treemap and sunburst are two such information visualization techniques, which previous research tells us can effectively represent information similar to that generated by the minority game. Another information visualization technique, called logical fisheye-lens, can be used to augment treemap and sunburst, allowing users to magnify areas of interest in these visualizations. In this paper, treemap and sunburst, both with and without fisheye-lens, are applied to the minority game, and their effectiveness is evaluated. This evaluation is carried out through an analysis of users performing various tasks on (simulated) financial market data using the visualization techniques. A subjective questionnaire is also used to measure the users’ impressions of the visualization techniques.Dynamic Models, Minority Game, Visualization

    Space-filling Techniques in Visualizing Output from Computer Based Economic Models

    Get PDF
    One important factor concerning economic models is that frequently large amounts of data are produced. There is the research issue of how end-users (who may not be researchers or model developers) can be presented with this data so that maximum benefits can be attained from the data production. The usual approach with economic models is a series of tables or data series plots. In this paper we use space-filling information visualization techniques as an aid to user’s understanding of data from an economic model. Based upon evaluation of the effectiveness of existing treemap and sunburst techniques through user experimentation, we introduce two new space-filling visualization techniques. We also describe fisheye-lens techniques applicable to these new visualizations.User Interfaces, Information visualisation, Minority Game

    THE ADDITION OF TRIMETHLYTIN HYDRIDE AND TRIMETHYLGERMANIUM HYDRIDE TO DIENES

    Get PDF

    Using measurements of CCN activity to characterize the mixing state, chemical composition, and droplet growth kinetics of atmospheric aerosols to constrain the aerosol indirect effect

    Get PDF
    Atmospheric aerosols are known to exert a significant influence on the Earth's climate system; however, the magnitude of this influence is highly uncertain because of the complex interaction between aerosols and water vapor to form clouds. Toward reducing this uncertainty, this dissertation outlines a series of laboratory and in-situ field measurements, instrument technique development, and model simulations designed to characterize the ability of aerosols to act as cloud condensation nuclei (CCN) and form cloud droplets. Specifically, we empirically quantify the mixing state and thermodynamic properties of organic aerosols (e.g., hygroscopicity and droplet condensational uptake coefficient) measured in polluted and non-polluted environments including Alaska, California, and Georgia. It is shown that organic aerosols comprise a substantial portion of the aerosol mass and are often water soluble. CCN measurements are compared to predictions from theory in order to determine the error associated with simplified composition and mixing state assumptions employed by current large-scale models, and these errors are used to constrain the uncertainty of global and regional cloud droplet number and albedo using a recently-developed cloud droplet parameterization adjoint coupled with the GMI chemical transport model. These sensitivities are important because they describe the main determinants of climate forcing. We also present two novel techniques for fast measurements of CCN concentrations with high size, supersaturation, and temporal resolution that substantially improve the state of the art by several orders of magnitude. Ultimately, this work represents a step toward better understanding how atmospheric aerosols influence cloud properties and Earth's climate.PhDCommittee Chair: Nenes, Athanasios; Committee Member: Grover, Martha; Committee Member: Huey, Greg; Committee Member: Teja, Amyn; Committee Member: Weber, Rodne
    • 

    corecore