5 research outputs found

    WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response

    Get PDF
    Genomic instability is a hallmark of cancer. The WW domaincontaining oxidoreductase (WWOX) is a tumor suppressor spanning the common chromosomal fragile site FRA16D. Here, we report a direct role ofWWOXin DNA damage response (DDR) and DNA repair. We show that Wwox deficiency results in reduced activation of the ataxia telangiectasia-mutated (ATM) checkpoint kinase, inefficient induction and maintenance of γ-H2AX foci, and impaired DNA repair. Mechanistically, we show that, upon DNA damage, WWOX accumulates in the cell nucleus, where it interacts with ATM and enhances its activation. Nuclear accumulation of WWOX is regulated by its K63- linked ubiquitination at lysine residue 274, which is mediated by the E3 ubiquitin ligase ITCH. These findings identify a novel role for the tumor suppressor WWOX and show that loss of WWOX expression may drive genomic instabilityWe thank Dr. Eugenio Gaudio and Dr. Sonja Matt for technical help, Dr. Yossi Shiloh for the ataxia telangiectasia-mutated inhibitor, and Dr. Kay Huebner for the rabbit polyclonal WW domaincontaining oxidoreductase antibody. This study was supported by a German Israeli Foundation Joint Grant (to T.G.H. and R.I.A.), Israeli Cancer Research Funds (to Z.S. and R.I.A.), Deutsche Forschungsgemeinschaft Grant SFB1036 (to T.G.H.), and the Deutsche Krebshilfe (T.G.H.)

    MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors

    No full text
    Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine
    corecore