18 research outputs found

    The generalized 3-connectivity and 4-connectivity of crossed cube

    No full text

    Lateral Variation of Tidal Mixing Asymmetry and Its Impact on the Longitudinal Sediment Transport in Turbidity Maximum Zone of Salt Wedge Estuary

    No full text
    The lateral bathymetry in the estuary results in different degrees of tidal mixing asymmetry, which has significant impacts on the longitudinal sediment transport by changing the temporal variation of vertical eddy diffusion. This study focus on the lateral variation of tidal mixing asymmetry and longitudinal sediment transport at the landward boundary of turbidity maximum zone in the North Channel of Yangtze estuary, which is a typical time-dependent salt wedge estuary. A transect survey was carried out in December, 2018; five vertical profiles of flow velocity, salinity and suspended sediment concentration were simultaneously measured covering a spring tidal cycle. Analysis of the data revealed that, after the maximum ebb, the stratification in the main and secondary channel was stronger than that on the shoal. In the channel, during ebb tide, the stronger stratification restrained the turbulent mixing induced by vertical shear, vertical mixing during the flood tide was stronger than that during ebb tide and vertical mixing coefficients ranged from 0.06 to 0.12, showing regular tidal mixing asymmetry over a flood–ebb tidal cycle. Therefore, stronger eddy diffusion caused by vertical mixing resulted in higher suspended sediment concentrations during flood tide, the larger landward tidally averaged sediment transport rate was induced by tidal pumping with the transportation of flood tidal current and the net sediment transport over a flood–ebb tidal cycle in the channel was landward. Meanwhile, on the shoal, under the effect of vertical shear, the vertical mixing during flood tide was weaker than that during ebb tide; vertical mixing coefficients ranged from −0.27 to −0.02, showing the reversed tidal mixing asymmetry. Higher suspended sediment concentration was transported seaward by the ebb current, the tidally averaged sediment transport rate by both tidal pumping and advection was seaward and the net sediment transport was seaward. Furthermore, large river discharge increased the seaward advection sediment flux on the surface layer in the main channel, resulting in the seaward tidally averaged sediment flux. Strong resuspension increased the seaward advection sediment flux near the bottom in the main and secondary channel, resulting in the seaward tidally averaged sediment flux

    Predicted Mapping of Seabed Sediments Based on MBES Backscatter and Bathymetric Data: A Case Study in Joseph Bonaparte Gulf, Australia, Using Random Forest Decision Tree

    No full text
    Predictive mapping of seabed sediments based on multibeam bathymetric (BM), and backscatter (BS) data is effective for mapping the spatial distribution of the substrate. A robust modeling technique, the random forest decision tree (RFDT), was used to predict the seabed sediments in an area of the Joseph Bonaparte Gulf, Northern Australia, using the multibeam data and seabed sediment samples collected simultaneously. The results showed that: (1) Using multibeam bathymetry data in addition to multibeam backscatter data improves the prediction performance of the RFDT. In comparison to only multibeam backscatter data, the prediction performance achieved a ~10% improvement in sediment properties; it achieved a ~44.45% improvement of overall accuracy in sediment types, and a ~0.55 improvement in Kappa. (2) The underlying relationships between sediment properties and multibeam data show that there is an opposite non-linear correlation between sediment property-BS and sediment property-BM. For example, there is an obvious negative relationship between %mud-BS at incidence angles of 13° and 21°, but the relationship between %mud-BM is positive. As such, the RFDT is a useful and well-performing method in predicting the relationship between sediment properties and multibeam data and in predicting the distribution of sediment properties and types. However, the sediment prediction method in deep-water areas with high gravel content needs to be further evaluated

    Lateral Variation of Tidal Mixing Asymmetry and Its Impact on the Longitudinal Sediment Transport in Turbidity Maximum Zone of Salt Wedge Estuary

    No full text
    The lateral bathymetry in the estuary results in different degrees of tidal mixing asymmetry, which has significant impacts on the longitudinal sediment transport by changing the temporal variation of vertical eddy diffusion. This study focus on the lateral variation of tidal mixing asymmetry and longitudinal sediment transport at the landward boundary of turbidity maximum zone in the North Channel of Yangtze estuary, which is a typical time-dependent salt wedge estuary. A transect survey was carried out in December, 2018; five vertical profiles of flow velocity, salinity and suspended sediment concentration were simultaneously measured covering a spring tidal cycle. Analysis of the data revealed that, after the maximum ebb, the stratification in the main and secondary channel was stronger than that on the shoal. In the channel, during ebb tide, the stronger stratification restrained the turbulent mixing induced by vertical shear, vertical mixing during the flood tide was stronger than that during ebb tide and vertical mixing coefficients ranged from 0.06 to 0.12, showing regular tidal mixing asymmetry over a flood–ebb tidal cycle. Therefore, stronger eddy diffusion caused by vertical mixing resulted in higher suspended sediment concentrations during flood tide, the larger landward tidally averaged sediment transport rate was induced by tidal pumping with the transportation of flood tidal current and the net sediment transport over a flood–ebb tidal cycle in the channel was landward. Meanwhile, on the shoal, under the effect of vertical shear, the vertical mixing during flood tide was weaker than that during ebb tide; vertical mixing coefficients ranged from −0.27 to −0.02, showing the reversed tidal mixing asymmetry. Higher suspended sediment concentration was transported seaward by the ebb current, the tidally averaged sediment transport rate by both tidal pumping and advection was seaward and the net sediment transport was seaward. Furthermore, large river discharge increased the seaward advection sediment flux on the surface layer in the main channel, resulting in the seaward tidally averaged sediment flux. Strong resuspension increased the seaward advection sediment flux near the bottom in the main and secondary channel, resulting in the seaward tidally averaged sediment flux

    Effect of Riverbed Morphology on Lateral Sediment Distribution in Estuaries

    No full text

    Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future

    No full text
    The evaluation of the hydrological responses of river basins to land-use and land-cover (LULC) changes is crucial for sustaining water resources. We assessed the impact of LULC changes (1990–2018) on three hydrological components (water yield (WYLD), evapotranspiration (ET), and sediment yield (SYLD)) of the Wami–Ruvu Basin (WRB) in Tanzania, using the Soil and Water Assessment Tool (SWAT). The 1990 LULC imagery was used for SWAT simulation, and imagery from 2000, 2010, and 2018 was used for comparison with modelled hydrological parameters. The model was calibrated (1993–2008) and validated (2009–2018) in the SWAT-CUP after allowing three years (1990–1992) for the warm-up period. The results showed a decrease in WYLD (3.11 mm) and an increase in ET (29.71 mm) and SYLD (from 0.12 t/h to 1.5 t/h). The impact of LULC changes on WYLD, ET, and SYLD showed that the increase in agriculture and built-up areas and bushland, and the contraction of forest led to the hydrological instability of the WRB. These results were further assessed with climatic factors, which revealed a decrease in precipitation and an increase in temperature by 1 °C. This situation seems to look more adverse in the future, based on the LULC of the year 2036 as predicted by the CA–Markov model. Our study calls for urgent intervention by re-planning LULC and re-assessing hydrological changes timely

    Riverbed Micromorphology of the Yangtze River Estuary, China

    No full text
    Dunes are present in nearly all fluvial channels and are vital in understanding sediment transport, deposition, and flow conditions during floods of rivers and estuaries. This information is pertinent for helping developing management practices to reduce risks in river transportation and engineering. Although a few recent studies have investigated the micromorphology of a portion of the Yangtze River estuary in China, our understanding of dune development in this large estuary is incomplete. It is also poorly understood how the development and characteristics of these dunes have been associated with human activities in the upper reach of the Yangtze River and two large-scale engineering projects in the estuarine zone. This study analyzed the feature in micromorphology of the entire Yangtze River estuary bed over the past three years and assessed the morphological response of the dunes to recent human activities. In 2012, 2014, and 2015, multi-beam bathymetric measurements were conducted on the channel surface of the Yangtze River estuary. The images were analyzed to characterize the subaqueous dunes and detect their changes over time. Bottom sediment samples were collected for grain size analysis to assess the physical properties of the dunes. We found that dunes in the Yangtze River estuary can be classified in four major classes: very large dunes, large dunes, medium dunes, and small dunes. Large dunes were predominant, amounting to 51.5%. There was a large area of dunes developed in the middle and upper reaches of the Yangtze River estuary and in the Hengsha Passage. A small area of dunes was observed for the first time in the turbidity maximum zone of the Yangtze River estuary. These dunes varied from 0.12 to 3.12 m in height with a wide range of wavelength from 2.83 to 127.89 m, yielding a range in height to wavelength of 0.003–0.136. Sharp leeside slope angles suggest that the steep slopes of asymmetrical dunes in the middle and upper reaches, and the turbidity maximum zone of the Yangtze River estuary face predominantly towards tides because of the ebb-dominated currents. Sharp windward slope angles in the lower reach of the North Passage show the influence of flood-dominated currents on dunes. It is likely that the scale of dunes will increase in the future in the South Channel because of a sharp decline of sediment discharge caused by recent human activities

    A DEK domain-containing protein GhDEK2D mediated Gossypium hirsutum enhanced resistance to Verticillium dahliae

    No full text
    DEK is associated with DNA replication and break repair, mRNA splicing, and transcriptional regulation, which had been studied in humans and mammals. The function of DEK in plants was poorly understood. In this study, GhDEK2D was identified in Gossypium hirsutum by genome-wide and post-translational modifications. GhDEK2D had been phosphorylated, acetylated and ubiquitylated under Verticillium dahliae (Vd) challenge. The GhDEK2D-silenced cotton decreased resistance against Vd. In GhDEK2D-silenced cotton plants, the reactive oxygen species was activated, the callose, xylogen, hypersensitive reaction (HR) and expression levels of defense-related genes were reduced. Homozygous overexpressing-GhDEK2D transgenic Arabidopsis lines were more resistant to Verticillium wilt (Vw). We propose that GhDEK2D was a potential molecular target for improving resistance to Vw in cotton
    corecore