6 research outputs found
Winter Dietary Analysis Reveals the Foraging Differences of Wild Boar (Sus scrofa) in Different Regions of a Karst Mountainous Area
Wild boars (Sus scrofa) are extremely common in southern China, but little study has been conducted regarding reporting the dietary habits of wild boars using high-throughput sequencing technology, especially in karst areas, due to the difficulty in obtaining stomach contents of wild boars. In our study, the stomach contents of 14 wild boars in southern China were analyzed by DNA metabarcoding. The results showed that there were 153 genera, 93 families, and 48 orders of plant food sources for wild boars. The main plant food component were Cissus, Dioscorea, Quercus, Actinidia, and Houttuynia. The most numerous taxa of animal food sources were Elaphodus, Amynthas, Chonaphe, Rattus, and Tanytarsus. It is noteworthy that Elaphodus cephalophus were detected in most of the stomach samples, accounting for a large portion of animal food sources. The results showed that there were significant differences in the diets of wild boars in different regions; however, no significant differences were noted between male and female wild boars. Our study revealed the dietary preference of wild boars under the special forest conditions in the mountainous area of southwest China, as well as the relationship between the dietary habits of wild boars and their habitats from the perspective of resource utilization, thus providing a key scientific basis for the prevention and control of wild boars, along with resource protection
Winter Dietary Analysis Reveals the Foraging Differences of Wild Boar (<i>Sus scrofa</i>) in Different Regions of a Karst Mountainous Area
Wild boars (Sus scrofa) are extremely common in southern China, but little study has been conducted regarding reporting the dietary habits of wild boars using high-throughput sequencing technology, especially in karst areas, due to the difficulty in obtaining stomach contents of wild boars. In our study, the stomach contents of 14 wild boars in southern China were analyzed by DNA metabarcoding. The results showed that there were 153 genera, 93 families, and 48 orders of plant food sources for wild boars. The main plant food component were Cissus, Dioscorea, Quercus, Actinidia, and Houttuynia. The most numerous taxa of animal food sources were Elaphodus, Amynthas, Chonaphe, Rattus, and Tanytarsus. It is noteworthy that Elaphodus cephalophus were detected in most of the stomach samples, accounting for a large portion of animal food sources. The results showed that there were significant differences in the diets of wild boars in different regions; however, no significant differences were noted between male and female wild boars. Our study revealed the dietary preference of wild boars under the special forest conditions in the mountainous area of southwest China, as well as the relationship between the dietary habits of wild boars and their habitats from the perspective of resource utilization, thus providing a key scientific basis for the prevention and control of wild boars, along with resource protection
Wavelet Analysis Reveals Phenology Mismatch between Leaf Phenology of Temperate Forest Plants and the Siberian Roe Deer Molting under Global Warming
Global warming is deeply influencing various ecological processes, especially regarding the phenological synchronization pattern between species, but more cases around the world are needed to reveal it. We report how the forest leaf phenology and ungulate molting respond differently to climate change, and investigate whether it will result in a potential phenology mismatch. Here, we explored how climate change might alter phenological synchronization between forest leaf phenology and Siberian roe deer (Capreolus pygargus) molting in northeast China based on a camera-trapping dataset of seven consecutive years, analyzing forest leaf phenology in combination with records of Siberian roe deer molting over the same period by means of wavelet analysis. We found that the start of the growing season of forest leaf phenology was advanced, while the end of the growing season was delayed, so that the length of the growing season was prolonged. Meanwhile, the start and the end of the molting of Siberian roe deer were both advanced in spring, but in autumn, the start of molting was delayed while the end of molting was advanced. The results of wavelet analysis also suggested the time lag of synchronization fluctuated slightly from year to year between forest leaf phenology and Siberian roe deer molting, with a potential phenology mismatch in spring, indicating the effect of global warming on SRD to forest leaf phenology. Overall, our study provides new insight into the synchronization between forest leaf phenology and ungulate molting, and demonstrates feasible approaches to data collection and analysis using camera-trapping data to explore global warming issues
Wavelet Analysis Reveals Phenology Mismatch between Leaf Phenology of Temperate Forest Plants and the Siberian Roe Deer Molting under Global Warming
Global warming is deeply influencing various ecological processes, especially regarding the phenological synchronization pattern between species, but more cases around the world are needed to reveal it. We report how the forest leaf phenology and ungulate molting respond differently to climate change, and investigate whether it will result in a potential phenology mismatch. Here, we explored how climate change might alter phenological synchronization between forest leaf phenology and Siberian roe deer (Capreolus pygargus) molting in northeast China based on a camera-trapping dataset of seven consecutive years, analyzing forest leaf phenology in combination with records of Siberian roe deer molting over the same period by means of wavelet analysis. We found that the start of the growing season of forest leaf phenology was advanced, while the end of the growing season was delayed, so that the length of the growing season was prolonged. Meanwhile, the start and the end of the molting of Siberian roe deer were both advanced in spring, but in autumn, the start of molting was delayed while the end of molting was advanced. The results of wavelet analysis also suggested the time lag of synchronization fluctuated slightly from year to year between forest leaf phenology and Siberian roe deer molting, with a potential phenology mismatch in spring, indicating the effect of global warming on SRD to forest leaf phenology. Overall, our study provides new insight into the synchronization between forest leaf phenology and ungulate molting, and demonstrates feasible approaches to data collection and analysis using camera-trapping data to explore global warming issues