71 research outputs found

    Integrative Genomic Analyses of Chromatin and Epigenetic Regulation Across Eukaryotes: A Journey from Yeast Transcription to Human Cancer

    Get PDF
    In the past decade, advances in high-throughput DNA sequencing have enabled unprecedented insights into the complex and often highly entangled mechanisms of epigenetics and chromatin regulation. However, many studies have been limited by sequencing costs or informatic complexities of high-throughput sequencing analyses. Oftentimes, only one aspect of chromatin can be investigated at once, limiting the full scope and understanding of epigenetic regulation mechanisms. Large scale consortia, though, such as The Epigenome Roadmap, ENCODE, and The Cancer Genome Atlas, began to pioneer the integration of multiple assays and analytical methods. These efforts have proven fruitful, and revealed many critical mutations, regulatory pathways, and chromatin-based processes that are central to cellular biology and human disease. In the chapters that follow, we take inspiration from these large consortia and describe the use of integrated technologies and analytical methods to reveal chromatin-based dynamics in yeast, in particular that of the histone post-translational modification H3K36me3 and its associated histone methyltransferase, Set2. We demonstrate that H3K36me3 deposition is a directed process, where H3K36me3 removal is a more stochastic process throughout the cell. We also reveal the consequences of losing Set2 and H3K36me3, which limits a yeast cell’s ability to properly respond to nutrient deprivation and results is misregulation of transcriptional fidelity. We use mouse models of congenital heart defects to elucidate how mutations in NuRD, a nucleosome remodeling complex, result in aberrant smooth and skeletal muscle isoform expression in cardiac tissues. We also examine how mutations in the nucleosome remodeling complex SWI/SNF members are conducive for non-small cell lung cancer and clear cell renal cell carcinoma development, from remodeling of nucleosomes at transcription start sites to the activation of oncogenic transcription factors that lead to the establishment of de novo enhancers associated with downstream tumorigenic pathways. Taken together, these studies expand our knowledge of epigenetic regulation mechanisms that could have only been elucidated by the integration of various genome-wide assays and informatics.Doctor of Philosoph

    PBRM1 Inactivation Promotes Upregulation of Human Endogenous Retroviruses in a HIF-Dependent Manner

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is considered an immunotherapy-responsive disease; however, the reasons for this remain unclear. Studies have variably implicated PBRM1 mutations as a predictive biomarker of immune checkpoint blockade (ICB) response, and separate studies demonstrate that expression of human endogenous retroviruses (hERV) might be an important class of tumor-associated antigens. We sought to understand whether specific mutations were associated with hERV expression. Two large, annotated genomic datasets, TCGA KIRC and IMmotion150, were used to correlate mutations and hERV expression. PBRM1 mutations were consistently associated with increased hERV expression in primary tumors. In vitro silencing of PBRM1, HIF1A, and HIF2A followed by RNA sequencing was performed in UMRC2 cells, confirming that PBRM1 regulates hERVs in a HIF1α- and HIF2α-dependent manner and that hERVs of the HERVERI superfamily are enriched in PBRM1-regulated hERVs. Our results uncover a role for PBRM1 in the negative regulation of hERVs in ccRCC. Moreover, the HIF-dependent nature of hERV expression explains the previously reported ccRCC-specific clinical associations of PBRM1-mutant ccRCC with both a good prognosis as well as improved clinical outcomes to ICB. See related Spotlight by Labaki et al., p. 274

    H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity

    Get PDF
    Set2-mediated histone methylation at H3K36 regulates diverse activities, including DNA repair, mRNA splicing, and suppression of inappropriate (cryptic) transcription. Although failure of Set2 to suppress cryptic transcription has been linked to decreased lifespan, the extent to which cryptic transcription influences other cellular functions is poorly understood. Here, we uncover a role for H3K36 methylation in the regulation of the nutrient stress response pathway. We found that the transcriptional response to nutrient stress was dysregulated in SET2-deleted (set2Δ) cells and was correlated with genome-wide bi-directional cryptic transcription that originated from within gene bodies. Antisense transcripts arising from these cryptic events extended into the promoters of the genes from which they arose and were associated with decreased sense transcription under nutrient stress conditions. These results suggest that Set2-enforced transcriptional fidelity is critical to the proper regulation of inducible and highly regulated transcription programs

    Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction

    Get PDF
    Spt6 is a histone chaperone that associates with RNA polymerase II and deposits nucleosomes in the wake of transcription. Although Spt6 has an essential function in nucleosome deposition, it is not known whether this function is influenced by post-translational modification. Here, we report that casein kinase II (CKII) phosphorylation of Spt6 is required for nucleosome occupancy at the 5' ends of genes to prevent aberrant antisense transcription and enforce transcriptional directionality. Mechanistically, we show that CKII phosphorylation of Spt6 promotes the interaction of Spt6 with Spn1, a binding partner required for chromatin reassembly and full recruitment of Spt6 to genes. Our study defines a function for CKII phosphorylation in transcription and highlights the importance of post-translational modification in histone chaperone function

    CHD4 and the NuRD complex directly control cardiac sarcomere formation

    Get PDF
    Cardiac development relies on proper cardiomyocyte differentiation, including expression and assembly of cell-type-specific actomyosin subunits into a functional cardiac sarcomere. Control of this process involves not only promoting expression of cardiac sarcomere subunits but also repressing expression of noncardiac myofibril paralogs. This level of transcriptional control requires broadly expressed multiprotein machines that modify and remodel the chromatin landscape to restrict transcription machinery access. Prominent among these is the nucleosome remodeling and deacetylase (NuRD) complex, which includes the catalytic core subunit CHD4. Here, we demonstrate that direct CHD4-mediated repression of skeletal and smooth muscle myofibril isoforms is required for normal cardiac sarcomere formation, function, and embryonic survival early in gestation. Through transcriptomic and genome-wide analyses of CHD4 localization, we identified unique CHD4 binding sites in smooth muscle myosin heavy chain, fast skeletal α-actin, and the fast skeletal troponin complex genes. We further demonstrate that in the absence of CHD4, cardiomyocytes in the developing heart form a hybrid muscle cell that contains cardiac, skeletal, and smooth muscle myofibril components. These misexpressed paralogs intercalate into the nascent cardiac sarcomere to disrupt sarcomere formation and cause impaired cardiac function in utero. These results demonstrate the genomic and physiological requirements for CHD4 in mammalian cardiac development

    STING suppresses mitochondrial VDAC2 to govern RCC growth independent of innate immunity

    Get PDF
    STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC

    BRG1/SMARCA4 Inactivation Promotes Non-Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization

    Get PDF
    SWI/SNF chromatin remodeling complexes regulate critical cellular processes including cell cycle control, programmed cell death, differentiation, genomic instability and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver and pediatric cancers. In particular, ~10% of primary human lung non-small lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
    • …
    corecore