66 research outputs found
Recommended from our members
How much sea turtle bycatch is too much? A stationary age distribution model for simulating population abundance and potential biological removal in the Mediterranean
Mediterranean populations of loggerhead Caretta caretta and green sea turtles Chelonia mydas are subject to several anthropogenic threats, with documented mortality from incidental capture in fishing gear. However, how such mortalities actually affect the populations is uncertain without an estimate of population size. We derived a theoretical demographic structure for each species in the Mediterranean, assuming a stationary age distribution in a stable population with constant proportions of turtles in each life stage, using distributions of age-specific vital rates. We incorporated uncertainty into the main vital rate parameters to identify a likely order of magnitude of turtle abundance in different life stages. Through this approach, we aim to (1) provide a rough estimate of all population stage classes, particularly the juvenile classes that are most subject to fisheries interactions, (2) provide an estimate of reproductive life span, (3) identify and review the key demographic parameters, and (4) identify the priority gaps in our information in need of further investigation. The range of population abundance estimates from the models constructed with uncertainty (95% CI) was 0.81-3.38 million loggerheads and 0.26-2.21 million green turtles, Mediterranean-wide. When we calculated the potential biological removal for the segment of the population at risk of fisheries capture, our estimates were comparable to or lower than the estimated bycatch levels in fisheries. Although the model assumes a stable population and provides only a rough estimate of abundance, these results suggest that the current bycatch level should be regarded as unsustainable for Mediterranean turtle populations.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by Inter-Research. The published article can be found at: http://www.int-res.com/journals/esr/esr-home/Keywords: Incidental capture, Green turtle, Demography, Caretta caretta, Loggerhead turtle, Chelonia myda
Recommended from our members
Elemental Markers in Elasmobranchs: Effects of Environmental History and Growth on Vertebral Chemistry
Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (D[subscript Mg]) and barium (D[subscript Ba]) and positively influenced manganese (D[subscript Mn]) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (D[subscript Ba]) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and D[subscript Zn] were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These results support the assumption that vertebral elemental composition reflects the environmental conditions during deposition and validates the use of vertebral elemental signatures as natural markers in an elasmobranch. Vertebral elemental analysis is a promising tool for the study of elasmobranch population structure, movement, and habitat use
Recommended from our members
The effects of temperature and predator densities on the consumption of walleye pollock (Gadus chalcogrammus) by three groundfish in the Gulf of Alaska
Many multispecies models have assumed that prey density determines per-capita predator consumption rates, following a functional response relationship. However, empirical evidence suggests that a predator’s diet can also be influenced by a variety of environmental factors, including interactions with other predators. We used diet and abundance data from National Marine Fisheries Service (NMFS) bottom trawl surveys for three groundfish predators (Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and sablefish (Anoplopoma fimbria)) in the Gulf of Alaska (GOA) to determine whether temperature or other species influence the consumption of walleye pollock (Gadus chalcogrammus). Using an information-theoretic approach, we tested for relationships between walleye pollock observed in predator stomachs and predator length, bottom temperature, prey availability (walleye pollock catch per unit effort (CPUE) scaled by observed prey lengths), and CPUE of the three predators and arrowtooth flounder (Atheresthes stomias). Predator length was positively related to walleye pollock presence and proportion of total diet mass in all predators. Increased temperatures negatively affected consumption of walleye pollock by Pacific halibut, but not the other predators. We found evidence for a number of interpredator effects of co-occurring predators, both positive (facultative) and negative (competitive). Surprisingly, observed prey density was not statistically significant with respect to consumption for these predators, suggesting that trawls sample the environment far differently than walleye pollock predators or species interactions are more complex than those used in previous multispecies models. These factors should be considered for future models contributing to ecosystem-based management
Recommended from our members
Quantification of Habitat and Community Relationships among Nearshore Temperate Fishes Through Analysis of Drop Camera Video
Temperate nearshore reefs along the Pacific coast of North America are highly valuable to commercial and recreational fisheries yet comprise a small fraction of the seabed. Monitoring fisheries resources in this region is difficult; high-relief structural complexity and adverse sea conditions have led to a paucity of information on temperate reef species assemblage patterns. Reliable, inexpensive tools and methods for monitoring are needed, as many traditional tools are both logistically complicated and expensive, limiting the frequency of their implementation over a large scale. Video drop cameras of varying designs have previously been employed to estimate fish abundance and distribution. We surveyed a nearshore rocky reef off the northern Oregon coast with a video lander (a video camera mounted on a landing platform so it can be dropped to the seafloor) over the spring and winter of 2011. We designed a 272-point systematic grid to document the species assemblage and the distribution and habitat associations of the reef species, including two overfished rockfishes: Canary Rockfish Sebastes pinniger and Yelloweye Rockfish Sebastes ruberrimus. Species assemblages differed significantly across the reef by depth and by season for the outer part of the reef. Well-defined habitat associations existed for many species; Canary Rockfish were associated with complex moderate-relief habitat types such as large boulders and small boulders, while Yelloweye Rockfish were associated with high-relief habitats like vertical walls. Species associations were evaluated pairwise to identify nearshore complexes. We compared our site with five exploratory reef sites off the central Oregon coast and found that nearshore reefs differed from our site, while offshore reefs were more similar. Video landers provide a solution to the need for increased sampling of temperate reef systems that are subject to difficult conditions and can contribute to habitat mapping, fish abundance indices, and fish assemblage information for monitoring and management of fisheries resources.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by Taylor & Francis. The published article can be found at: http://www.tandfonline.com/doi/full/10.1080/19425120.2015.100718
Effects of Variable Oceanographic Conditions on Forage Fish Lipid Content and Fatty Acid Composition in the Northern California Current
Lipids and fatty acids (FA) were investigated in 4 species of forage fish: northern anchovy Engraulis mordax, Pacific sardine Sardinops sagax, Pacific herring Clupea pallasi, and whitebait smelt Allosmerus elongatus, for their ability to serve as biological indicators of ocean conditions in the California Current large marine ecosystem (CCLME). Samples were collected during the oceanographically contrasting years of 2005 and 2006. Upwelling was severely curtailed in the spring and early summer of 2005, leading to delayed biological productivity, whereas upwelling was relatively normal in spring 2006. Principal components analysis described 78% of the variance within the lipid and FA dataset using the first 2 principal components. We found significant intra- and interspecific, interannual, and seasonal differences in lipid and FA profiles using univariate and permutation- based multivariate analysis of variance. Indicator species analysis showed distinct lipid and FA properties associated with each fish species. Using the ratio of docosahexaenoic acid (C22:6n-3) to eicosapentaeonic acid (C20:5n-3), we detected a transition from a diet composed primarily of dinoflagellate origin in early 2005 to a diet resulting from diatom-based productivity by late summer 2006. This shift was due to interannual differences in primary production, which was confirmed through phytoplankton sampling. Our study demonstrates that lipid and FA biomarkers in the forage fish community can provide information on ocean conditions and productivity that affect food web structure in the CCLME
Recommended from our members
Characterizing environmental and spatial variables associated with the incidental catch of olive ridley (Lepidochelys olivacea) in the Eastern Tropical Pacific purse-seine fishery
In the Eastern Tropical Pacific (ETP), a region of high fishing activity, olive ridley (Lepidochelis olivacea) and other sea turtles are accidentally caught in fishing nets with tuna and other animals. To date, the interaction between fishing activity, ocean conditions and sea turtle incidental catch in the ETP has been described and quantified, but the factors leading to the interaction of olive ridleys and fishing activity are not well understood. This information is essential for the development of future management strategies that avoid bycatch and incidental captures of sea turtles. We used Generalized additive models (GAM) to analyze the relationship between olive ridley incidental catch per unit effort (iCPUE) in the ETP purse-seine fisheries and environmental conditions, geographic extent and fishing set type (associated with dolphins, floating objects or in free-swimming tuna schools). Our results suggest that water temperature, set type and geographic location (latitude, longitude and distance to nesting beaches) are the most important predictor variables to describe the probability of a capture event, with the highest iCPUE observed in sets made over floating objects. With the environmental predictors used, sea surface temperatures (SST) of 26–30°C and chlorophyll-a (chl-a) concentrations <0.36 mg m⁻³ were associated with the highest probability of an incidental catch. Temporally, the highest probability of an incidental catch was observed in the second half of the year (June to December). Four regions were observed as high incidental catch hotspots: North and south of the equator between 0–10°N; 0–10°S and from 120 to 140°W; and along the Colombian coast and surrounding regions.The author has paid this publisher's Open Access fee.
This is the publisher’s final pdf. The published article is copyrighted by John Wiley & Sons, Ltd. and can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-2419Keywords: Inter American Tropical Tuna Commission, purse-seine, General Additive Model, olive ridley, spatial prediction, incidental catch, Eastern Tropical Pacifi
Recommended from our members
Patterns of loggerhead turtle ontogenetic shifts revealed through isotopic analysis of annual skeletal growth increments
Ontogenetic changes in resource use often delimit transitions between life stages. Ecological and individual factors can cause variation in the timing and consistency of these transitions, ultimately affecting community and population dynamics through changes in growth and survival. Therefore, it is important to document and understand behavioral and life history polymorphisms, and the processes that drive intraspecific variation in them. To evaluate juvenile loggerhead sea turtle (Caretta caretta) life history variation and to detect shifts in habitat and diet that occur during an oceanic-to-neritic ontogenetic shift, we sequentially analyzed the stable isotope composition of humerus bone growth increments from turtles that stranded dead on Southeastern U.S. beaches between 1997 and 2013 (n = 84). In one-half of the sampled turtles, growth increment-specific nitrogen stable isotope (δ¹⁵N) data showed significant increases in δ¹⁵N values over each turtle's life. These data were used to provide a new line of evidence that juvenile Northwest Atlantic loggerheads exhibit two major ontogenetic shift patterns: discrete shifts (n = 24), which were completed within one year, and facultative shifts (n = 14), which were completed over multiple years (up to five). The mean difference in pre- and post-ontogenetic shift δ¹⁵N values was 4.3‰. Differences in isotopic baselines between neritic and oceanic habitats of the Northwest Atlantic Ocean make it likely these patterns are driven by a coupled change in both habitat and diet, and that facultative shifters utilize both neritic and oceanic resources within transitional growth years. Mean size and age at transition between habitats (54.2 cm straightline carapace length, SCL; 11.98 yr) was within the range of previous estimates and did not differ between discrete and facultative shifters. Our results further expand our understanding of loggerhead sea turtle life history polymorphisms and demonstrate the value of bone tissue analysis to the study of this variation. Sequential analysis of annual skeletal growth increments provides a valuable method for reconstructing long-term ontogenetic changes in foraging ecology and habitat use in long-lived, cryptic marine species
The relationship between maternal phenotype and offspring quality: Do older mothers really produce the best offspring?
Maternal effects are increasingly recognized as important drivers of population dynamics and determinants of evolutionary trajectories. Recently, there has been a proliferation of studies finding or citing a positive relationship between maternal size/age and offspring size or offspring quality. The relationship between maternal phenotype and offspring size is intriguing in that it is unclear why young mothers should produce offspring of inferior quality or fitness. Here we evaluate the underlying evolutionary pressures that may lead to a maternal size/age-offspring size correlation and consider the likelihood that such a correlation results in a positive relationship between the age or size of mothers and the fitness of their offspring. We find that, while there are a number of reasons why selection may favor the production of larger offspring by larger mothers, this change in size is more likely due to associated changes in the maternal phenotype that affect the offspring size-performance relationship. We did not find evidence that the offspring of older females should have intrinsically higher fitness. When we explored this issue theoretically, the only instance in which smaller mothers produce suboptimal offspring sizes is when a (largely unsupported) constraint on maximum offspring size is introduced into the model. It is clear that larger offspring fare better than smaller offspring when reared in the same environment, but this misses a critical point: different environments elicit selection for different optimal sizes of young. We suggest that caution should be exercised when interpreting the outcome of offspring-size experiments when offspring from different mothers are reared in a common environment, because this approach may remove the source of selection (e.g., reproducing in different context) that induced a shift in offspring size in the first place. It has been suggested that fish stocks should be managed to preserve these older age classes because larger mothers produce offspring with a greater chance of survival and subsequent recruitment. Overall, we suggest that, while there are clear and compelling reasons for preserving older females in exploited populations, there is little theoretical justification or evidence that older mothers produce offspring with higher per capita fitness than do younger mothers
Recommended from our members
Catch shares, fisheries, and ecological stewardship: a comparative analysis of resource responses to a rights-based policy instrument
Rights-based approaches are potentially promising tools to meet conservation objectives in natural resource management. Here, we evaluated how population status and fishery production respond to catch shares, a rights-based policy instrument in fisheries whereby participants are granted a right to harvest a fraction of the allowable catch. By analyzing time series of landings, exploitation rate, and population biomass for >150 fisheries, we find that catch shares tended to dampen variance in fishery landings and exploitation rate, that they had no effect on population biomass, and that the responses were unrelated to population status prior to catch shares. Variance dampening was strongest when harvesting rights were durable and secure but was absent otherwise. Reductions in exploitation rate were strongest in multispecies fisheries with high levels of at-sea observers. Although benefits are not guaranteed, successful catch share programs share common elements that can be incorporated in the design of future programs.Keywords: marine conservation, Catch shares, market-based approaches, fisheries, policy evaluation, property-rightsKeywords: marine conservation, Catch shares, market-based approaches, fisheries, policy evaluation, property-right
- …