46 research outputs found

    Generation of Functional Insulin-Producing Cells from Neonatal Porcine Liver-Derived Cells by PDX1/VP16, BETA2/NeuroD and MafA

    Get PDF
    Abstract Surrogate b-cells derived from stem cells are needed to cure type 1 diabetes, and neonatal liver cells may be an attractive alternative to stem cells for the generation of b-cells. In this study, we attempted to generate insulin-producing cells from neonatal porcine liver-derived cells using adenoviruses carrying three genes: pancreatic and duodenal homeobox factor1 (PDX1)/VP16, BETA2/NeuroD and v-maf musculo aponeurotic fibrosarcoma oncogene homolog A (MafA), which are all known to play critical roles in pancreatic development. Isolated neonatal porcine liver-derived cells were sequentially transduced with triple adenoviruses and grown in induction medium containing a high concentration of glucose, epidermal growth factors, nicotinamide and a low concentration of serum following the induction of aggregation for further maturation. We noted that the cells displayed a number of molecular characteristics of pancreatic b-cells, including expressing several transcription factors necessary for b-cell development and function. In addition, these cells synthesized and physiologically secreted insulin. Transplanting these differentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the reversal of hyperglycemia, and more than 18% of the cells in the grafts expressed insulin at 6 weeks after transplantation. These data suggested that neonatal porcine liver-derived cells can be differentiated into functional insulin-producing cells under the culture conditions presented in this report and indicated that neonatal porcine liverderived cells (NPLCs) might be useful as a potential source of cells for b-cell replacement therapy in efforts to cure type I diabetes

    Effects of Toxic Heavy Metal Salts on Oxidative Quality Deterioration in Ground Pork Model during Aerobic Display Storage

    No full text
    The contamination of toxic heavy metals in meat production and processing can cause the oxidative deterioration of processed meat products. Aside from the possible mechanisms of toxic heavy metals on pro-oxidative reaction, little is known about the potential impacts of toxic heavy metal contamination on meat quality attributes within permitted maximum residual levels. Therefore, the objective of this study was to determine the influence of the intentional contamination of toxic heavy metals on the oxidative deterioration in ground pork models during aerobic display storage. Four types of toxic heavy metal salts (As2O3, CdCl2, K2Cr2O7, and Pb(NO3)2) were mixed with ground pork at two different levels (maximum residue limit and its half level), PVC-wrapped, and displayed in a 4 °C showcase equipped with continuous fluorescent natural white light (1400 l×, color temperature = 6500 K). The contamination of toxic heavy metals significantly decreased the redness of ground pork, and rapidly increased the hue angle. The contamination of Cd and Cr equivalent to maximum residue levels (0.05 and 1.0 mg/kg, respectively) could increase the formation of peroxides, 2-thiobarbituric acid reactive substances, and carbonyls, along with an immediate decrease in total reducing activity. However, there was no difference in protein thiol content between treatments (p > 0.05). These results indicate that contamination of certain toxic heavy metals, particularly Cd and Cr, would accelerate discoloration, lipid oxidation, and carbonyl formation of ground pork during aerobic storage

    Physicochemical Properties of Mixed Gelatin Gels with Soy and Whey Proteins

    No full text
    The physicochemical properties of the mixed gelatin gels with soy and whey proteins were investigated to develop the gel base with a soft texture and abundant essential amino acids for the elderly. Gelatin-only gel (control) was prepared at 6% (w/v), and mixed gelatin gels were formulated by replacing gelatin with soy protein isolate and whey protein concentrate at different mixing ratios [gelatin (G):soy protein isolate (S):whey protein concentrate (W)]. Results showed that replacing gelatin with the globular proteins in gelatin gels increased the pH value and processing yield (p p p > 0.05). The results of protein pattern, x-ray diffraction, and microstructure had no clear evidence for specific proteinā€“protein interaction in the mixed gelatin gels. Therefore, this study indicates that mixed gelatin gels with the globular proteins at specific mixing ratios could be a practical approach to providing a soft texture and high-level essential amino acids to the elderly

    Evaluation of NaCl and KCl Salting Effects on Technological Properties of Pre- and Post-Rigor Chicken Breasts at Various Ionic Strengths

    No full text
    The objective of this study is to evaluate the effects of NaCl and KCl salting on technological properties of pre- and post-rigor chicken breasts at various ionic strengths. The following factorial arrangement was used: 2 salt types (NaCl and KCl) × 2 rigor statuses (pre- and post-rigor) × 4 ionic strengths (0.086, 0.171, 0.257, and 0.342). Hot-boned and ground chicken breasts were salted within 30 min postmortem after slaughter (pre-rigor salting) or 24 h postmortem (post-rigor salting) with varying concentrations of NaCl (0.50%, 1.00%, 1.50%, and 2.00%) or KCl (0.64%, 1.28%, 1.91%, and 2.55%) corresponding to the four ionic strengths. KCl caused higher pH value in salted chicken breasts than NaCl (p < 0.05). However, KCl decreased total and myofibrillar protein solubilities in post-rigor salted chicken breasts compared to NaCl (p < 0.05), but those were similar to pre-rigor chicken breasts, regardless of the salt type (p > 0.05). Different salt types had no significant impact on cooking loss and textural properties. This study shows that NaCl and KCl had similar effects on technological properties at the same ionic strength (within 0.342), but the use of KCl may have the possibility to decrease protein solubility, depending on rigor status of raw meat at the different salting time

    Altered T cell and monocyte subsets in prolonged immune reconstitution inflammatory syndrome related with DRESS (drug reaction with eosinophilia and systemic symptoms)

    No full text
    Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a severe cutaneous adverse reaction involving various internal organs. Flare-ups after recovery from the initial presentation of DRESS are caused by relapse of drug-induced T-cell-mediated reactions. However, the specific underlying mechanism is unclear. Here, we report a case of a 60-year-old man with allopurinol-induced DRESS who suffered recurrent episodes of generalized rash with eosinophilia, which mimicked immune reconstitution inflammatory syndrome. Analysis of immunological profiles revealed that the percentages of T lymphocytes and regulatory T cells in the patient with DRESS were higher than those in healthy controls. In addition, there was a notable change in the subtype of monocytes in the patient with DRESS; the percentage of nonclassical monocytes increased, whereas that of classical monocytes decreased. Upon viral infection, nonclassical monocytes exhibited strong proinflammatory properties that skewed the immune response toward a Th2 profile, which was associated with persistent flare-ups of DRESS. Taken together, the results increase our understanding of the pathogenesis of DRESS as they suggest that expansion of nonclassical monocytes and Th2 cells drives disease pathogenesis.Y
    corecore