940 research outputs found

    The Impact Of French Camp Academy On Child Abuse And Neglect

    Get PDF
    Within the last few decades, child abuse and neglect has not improved in the United States. Government services provides facilities and licensed families for abused and neglected children, but children often do not adjust due to negative past experiences. However, there are other non-governmental programs that help counter child abuse and neglect. This research focuses on one student attending French Camp Academy, a Christian-based boarding school in central Mississippi, in order to shed light on possible ways to stop the vicious cycle that children go through. When children receive the acknowledgment and support from a parental figure, they are more likely to change their negative behaviors and eventually contribute in their future society

    Progressive Processing of Continuous Range Queries in Hierarchical Wireless Sensor Networks

    Full text link
    In this paper, we study the problem of processing continuous range queries in a hierarchical wireless sensor network. Contrasted with the traditional approach of building networks in a "flat" structure using sensor devices of the same capability, the hierarchical approach deploys devices of higher capability in a higher tier, i.e., a tier closer to the server. While query processing in flat sensor networks has been widely studied, the study on query processing in hierarchical sensor networks has been inadequate. In wireless sensor networks, the main costs that should be considered are the energy for sending data and the storage for storing queries. There is a trade-off between these two costs. Based on this, we first propose a progressive processing method that effectively processes a large number of continuous range queries in hierarchical sensor networks. The proposed method uses the query merging technique proposed by Xiang et al. as the basis and additionally considers the trade-off between the two costs. More specifically, it works toward reducing the storage cost at lower-tier nodes by merging more queries, and toward reducing the energy cost at higher-tier nodes by merging fewer queries (thereby reducing "false alarms"). We then present how to build a hierarchical sensor network that is optimal with respect to the weighted sum of the two costs. It allows for a cost-based systematic control of the trade-off based on the relative importance between the storage and energy in a given network environment and application. Experimental results show that the proposed method achieves a near-optimal control between the storage and energy and reduces the cost by 0.989~84.995 times compared with the cost achieved using the flat (i.e., non-hierarchical) setup as in the work by Xiang et al.Comment: 41 pages, 20 figure

    Pauli paramagnetism of an ideal Fermi gas

    Full text link
    We show how to use trapped ultracold atoms to measure the magnetic susceptibility of a two-component Fermi gas. The method is illustrated for a non-interacting gas of 6^6Li, using the tunability of interactions around a wide Feshbach resonances. The susceptibility versus effective magnetic field is directly obtained from the inhomogeneous density profile of the trapped atomic cloud. The wings of the cloud realize the high field limit where the polarization approaches 100%, which is not accessible for an electron gas.Comment: 5 pages, 4 figure

    Coyote C++: An Industrial-Strength Fully Automated Unit Testing Tool

    Full text link
    Coyote C++ is an automated testing tool that uses a sophisticated concolic-execution-based approach to realize fully automated unit testing for C and C++. While concolic testing has proven effective for languages such as C and Java, tools have struggled to achieve a practical level of automation for C++ due to its many syntactical intricacies and overall complexity. Coyote C++ is the first automated testing tool to breach the barrier and bring automated unit testing for C++ to a practical level suitable for industrial adoption, consistently reaching around 90% code coverage. Notably, this testing process requires no user involvement and performs test harness generation, test case generation and test execution with "one-click" automation. In this paper, we introduce Coyote C++ by outlining its high-level structure and discussing the core design decisions that shaped the implementation of its concolic execution engine. Finally, we demonstrate that Coyote C++ is capable of achieving high coverage results within a reasonable timespan by presenting the results from experiments on both open-source and industrial software

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    Real-Time Test-Bed System Development Using Power Hardware-in-the-Loop (PHIL) Simulation Technique for Reliability Test of DC Nano Grid

    Get PDF
    Since various power sources such as renewable energy and energy storage systems (ESSs) are connected to the DC grid, the reliability of the grid system is significant. However, the configuration of an actual DC grids for testing the reliability of the grid system is inconvenient, expensive and dangerous. In this paper, a test-bed system made up of a 20-kW DC nano grid and a control algorithm considering an external grid based on Power Hardware-in-the-Loop (PHIL) simulation are proposed to demonstrate the reliability of the DC grid. Using the PHIL simulation technique, target grids can be safely implemented with laboratory-level instruments and simulated by real-time simulators, which emulates grid operations that are similar to the actual grid. In addition, using the proposed control algorithm, the operations of grid-connected converters are demonstrated according to the grid-connected or islanding modes. Finally, the reliability of the simulated DC nano grid and the effectiveness of the grid-connected converter are verified using the PHIL simulation system with 3-kW prototype converters
    corecore