3,661 research outputs found

    The optical polarization of Epsilon Aurigae through the 1982-84 eclipse

    Get PDF
    About 350 nights observations on the 61-cm telescope at Pine Mt. Observatory were made of the variable polarization of Eps. Aurigae during 1982-85, in the U, B, and V color bands. The V data are the most complete and are shown. In terms of the overall features the curves in all three colors are quite similar. The typical errors per nightly point in the V curves are about 0.015% for either of the two normalized, equatorial Stokes parameters Q and U. Note that there is a large background or constant component of some 2.5%, position angle around 135 deg. This is presumably largely interstellar, and the intrinsic polarization probably does not much exceed the amplitude of the variable component, approx. 0.5%. A few field-star polarizations were measured but a very clear pattern was not obtained in this part of the sky

    Spacelike distance from discrete causal order

    Get PDF
    Any discrete approach to quantum gravity must provide some prescription as to how to deduce continuum properties from the discrete substructure. In the causal set approach it is straightforward to deduce timelike distances, but surprisingly difficult to extract spacelike distances, because of the unique combination of discreteness with local Lorentz invariance in that approach. We propose a number of methods to overcome this difficulty, one of which reproduces the spatial distance between two points in a finite region of Minkowski space. We provide numerical evidence that this definition can be used to define a `spatial nearest neighbor' relation on a causal set, and conjecture that this can be exploited to define the length of `continuous curves' in causal sets which are approximated by curved spacetime. This provides evidence in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio

    Spectral geometry as a probe of quantum spacetime

    Full text link
    Employing standard results from spectral geometry, we provide strong evidence that in the classical limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This result is obtained by measuring the expectation value of the spectral dimension on the ensemble of geometries defined by these models, and comparing its large scale behaviour to that of a sphere (Euclidean de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical dimensional reduction observed in this and other approaches to quantum gravity -- the first time this has been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these results for the comparison to asymptotic safety and Horava-Lifshitz gravity, among other approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added, acknowledgment added

    Feynman Propagator for a Free Scalar Field on a Causal Set

    Full text link
    The Feynman propagator for a free bosonic scalar field on the discrete spacetime of a causal set is presented. The formalism includes scalar field operators and a vacuum state which define a scalar quantum field theory on a causal set. This work can be viewed as a novel regularisation of quantum field theory based on a Lorentz invariant discretisation of spacetime.Comment: 4 pages, 2 plots. Minor updates to match published versio

    A Bell Inequality Analog in Quantum Measure Theory

    Get PDF
    One obtains Bell's inequalities if one posits a hypothetical joint probability distribution, or {\it measure}, whose marginals yield the probabilities produced by the spin measurements in question. The existence of a joint measure is in turn equivalent to a certain causality condition known as ``screening off''. We show that if one assumes, more generally, a joint {\it quantal measure}, or ``decoherence functional'', one obtains instead an analogous inequality weaker by a factor of 2\sqrt{2}. The proof of this ``Tsirel'son inequality'' is geometrical and rests on the possibility of associating a Hilbert space to any strongly positive quantal measure. These results lead both to a {\it question}: ``Does a joint measure follow from some quantal analog of `screening off'?'', and to the {\it observation} that non-contextual hidden variables are viable in histories-based quantum mechanics, even if they are excluded classically.Comment: 38 pages, TeX. Several changes and added comments to bring out the meaning more clearly. Minor rewording and extra acknowledgements, now closer to published versio

    Nonconvergence, Undecidability, and Intractability in Asymptotic Problems

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154144/1/39015099114582.pd

    Billy Elliot The Musical: visual representations of working-class masculinity and the all-singing, all-dancing bo[d]y

    Get PDF
    According to Cynthia Weber, ‘[d]ance is commonly thought of as liberating, transformative, empowering, transgressive, and even as dangerous’. Yet ballet as a masculine activity still remains a suspect phenomenon. This paper will challenge this claim in relation to Billy Elliot the Musical and its critical reception. The transformation of the visual representation of the human body on stage (from an ephemeral existence to a timeless work of art) will be discussed and analysed vis-a-vis the text and sub-texts of Stephen Daldry’s direction and Peter Darling’s choreography. The dynamics of working-class masculinity will be contextualised within the framework of the family, the older female, the community, the self and the act of dancing itself

    Applying causality principles to the axiomatization of probabilistic cellular automata

    Full text link
    Cellular automata (CA) consist of an array of identical cells, each of which may take one of a finite number of possible states. The entire array evolves in discrete time steps by iterating a global evolution G. Further, this global evolution G is required to be shift-invariant (it acts the same everywhere) and causal (information cannot be transmitted faster than some fixed number of cells per time step). At least in the classical, reversible and quantum cases, these two top-down axiomatic conditions are sufficient to entail more bottom-up, operational descriptions of G. We investigate whether the same is true in the probabilistic case. Keywords: Characterization, noise, Markov process, stochastic Einstein locality, screening-off, common cause principle, non-signalling, Multi-party non-local box.Comment: 13 pages, 6 figures, LaTeX, v2: refs adde

    The Plants Database: Providing Basic Plant Information

    Get PDF
    The PLANTS database provides basic plant information to the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), its clients, cooperators, and the general public via the World Wide Web (Fig. 1). The foundation of PLANTS is a taxonomic backbone (checklist) of the vascular and nonvascular plants of North America (north of Mexico) and United States territories in the Caribbean and Pacific regions. Attribute data are appended to this backbone pertaining to distribution, vegetative specifications, nativity, federal and state status, crop data, growth form, growth parameters, species abstracts, and images

    Quantum Dynamics without the Wave Function

    Get PDF
    When suitably generalized and interpreted, the path-integral offers an alternative to the more familiar quantal formalism based on state-vectors, selfadjoint operators, and external observers. Mathematically one generalizes the path-integral-as-propagator to a {\it quantal measure} μ\mu on the space Ω\Omega of all ``conceivable worlds'', and this generalized measure expresses the dynamics or law of motion of the theory, much as Wiener measure expresses the dynamics of Brownian motion. Within such ``histories-based'' schemes new, and more ``realistic'' possibilities open up for resolving the philosophical problems of the state-vector formalism. In particular, one can dispense with the need for external agents by locating the predictive content of μ\mu in its sets of measure zero: such sets are to be ``precluded''. But unrestricted application of this rule engenders contradictions. One possible response would remove the contradictions by circumscribing the application of the preclusion concept. Another response, more in the tradition of ``quantum logic'', would accommodate the contradictions by dualizing Ω\Omega to a space of ``co-events'' and effectively identifying reality with an element of this dual space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it Journal of Physics A: Mathematical and General} entitled ``The Quantum Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th birthday. Most current version is available at http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may be
    corecore