34 research outputs found

    Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8 T Cells in the Same Host.

    Get PDF
    T cells undergo profound metabolic changes to meet the increased energy demands of maintaining an antiviral response. We postulated that differences in metabolic reprogramming would shape the efficacy of CD8 T cells mounted against persistent viral infections. We found that the poorly functional PD-1(hi) T cell response against hepatitis B virus (HBV) had upregulated the glucose transporter, Glut1, an effect recapitulated by oxygen deprivation to mimic the intrahepatic environment. Glut1(hi) HBV-specific T cells were dependent on glucose supplies, unlike the more functional cytomegalovirus (CMV)-specific T cells that could utilize oxidative phosphorylation in the absence of glucose. The inability of HBV-specific T cells to switch to oxidative phosphorylation was accompanied by increased mitochondrial size and lower mitochondrial potential, indicative of mitochondrial dysfunction. Interleukin (IL)-12, which recovers HBV-specific T cell effector function, increased their mitochondrial potential and reduced their dependence on glycolysis. Our findings suggest that mitochondrial defects limit the metabolic plasticity of exhausted HBV-specific T cells.A.S., J.W., and M.K.M. are funded by a Wellcome Trust Senior Investigator Award (to M.K.M.); L.J.P. and M.K.M. are funded by MRC Project grant no. MR/M020126/; I.O. is funded by an EASL post-doctoral fellowship; U.S.G. is funded by the Wellcome Trust Clinical Research Training Fellowship; and N.H. and P.T.K. are funded by a grant from Barts and The London Charity. A.S. was also funded by a UCLH CIDC/NIHR Fast Track Grant, and D.J. was funded by the Wolfson Foundation.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.celrep.2016.06.07

    The association between air pollution and type 2 diabetes in a large cross-sectional study in Leicester: The CHAMPIONS Study

    Get PDF
    Background: Observational evidence suggests there is an association between air pollution and type 2 diabetes; however, there is high risk of bias. Objective: To investigate the association between air pollution and type 2 diabetes, while reducing bias due to exposure assessment, outcome assessment, and confounder assessment. Methods: Data were collected from 10,443 participants in three diabetes screening studies in Leicestershire, UK. Exposure assessment included standard, prevailing estimates of outdoor nitrogen dioxide and particulate matter concentrations in a 1 × 1 km area at the participant's home postcode. Three-year exposure was investigated in the primary analysis and one-year exposure in a sensitivity analysis. Outcome assessment included the oral glucose tolerance test for type 2 diabetes. Confounder assessment included demographic factors (age, sex, ethnicity, smoking, area social deprivation, urban or rural location), lifestyle factors (body mass index and physical activity), and neighbourhood green space. Results: Nitrogen dioxide and particulate matter concentrations were associated with type 2 diabetes in unadjusted models. There was no statistically significant association between nitrogen dioxide concentration and type 2 diabetes after adjustment for demographic factors (odds: 1.08; 95% CI: 0.91, 1.29). The odds of type 2 diabetes was 1.10 (95% CI: 0.92, 1.32) after further adjustment for lifestyle factors and 0.91 (95% CI: 0.72, 1.16) after yet further adjustment for neighbourhood green space. The associations between particulate matter concentrations and type 2 diabetes were also explained away by demographic factors. There was no evidence of exposure definition bias. Conclusions: Demographic factors seemed to explain the association between air pollution and type 2 diabetes in this cross-sectional study. High-quality longitudinal studies are needed to improve our understanding of the association

    Properties of end-stage human T cells defined by CD45RA re-expression.

    Get PDF
    Persistent viral infections, inflammatory syndromes and ageing all induce the accumulation of highly differentiated CD45RA re-expressing memory T cells. These cells increase during ageing, especially in individuals who are infected with cytomegalovirus (CMV). These cells have decreased proliferative capacity, increased activation of senescence signalling pathways and greater susceptibility to apoptosis in vitro. However these cells are capable of multiple effector functions and thus bear all the hallmarks of short-lived effector T cells. This indicates that senescence signalling may govern the unique characteristics of effector T cells. In this article, we address the functional and migratory properties of these T cells and mechanisms that are involved in their generation. Finally we assess the potential for manipulation of their activity and whether this may improve immune function during ageing

    p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells

    Get PDF
    T cell senescence is thought to contribute to immune function decline, but the pathways that mediate senescence in these cells are not clear. Here, we evaluated T cell populations from healthy volunteers and determined that human CD8+ effector memory T cells that reexpress the naive T cell marker CD45RA have many characteristics of cellular senescence, including decreased proliferation, defective mitochondrial function, and elevated levels of both ROS and p38 MAPK. Despite their apparent senescent state, we determined that these cells secreted high levels of both TNF-α and IFN-γ and showed potent cytotoxic activity. We found that the senescent CD45RA-expressing population engaged anaerobic glycolysis to generate energy for effector functions. Furthermore, inhibition of p38 MAPK signaling in senescent CD8+ T cells increased their proliferation, telomerase activity, mitochondrial biogenesis, and fitness; however, the extra energy required for these processes did not arise from increased glucose uptake or oxidative phosphorylation. Instead, p38 MAPK blockade in these senescent cells induced an increase in autophagy through enhanced interactions between p38 interacting protein (p38IP) and autophagy protein 9 (ATG9) in an mTOR-independent manner. Together, our findings describe fundamental metabolic requirements of senescent primary human CD8+ T cells and demonstrate that p38 MAPK blockade reverses senescence via an mTOR-independent pathway

    Report from the second cytomegalovirus and immunosenescence workshop.

    Get PDF
    The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Effects of ageing to adaptive immune responses.

    No full text
    corecore