83 research outputs found

    Healing of Osteochondral Defects via Endochondral Ossification in an Ovine Model

    Get PDF
    © The Author(s) 2017. Objective: The objective of this study was to describe the mechanism of healing of osteochondral defects of the distal femur in the sheep, a commonly used translational model. Information on the healing mechanism be useful to inform the design of tissue engineering devices for joint surface defect repair. Design: A retrospective study was conducted examining 7-mm diameter osteochondral defects made in the distal medial femoral condyle of 40 adult female sheep, comprising control animals from 3 separate structures. The healing of the defects was studied at post mortem at up to 26 weeks. Results: Osteochondral defects of the distal femur of the sheep heal through endochondral ossification as evidenced by chondrocyte hypertrophy and type X collagen expression. Neocartilage is first formed adjacent to damaged cartilage and then streams over the damaged underlying bone before filling the defect from the base upward. No intramembranous ossification or isolated mesenchymal stem cell aggregates were detected in the healing tissue. No osseous hypertrophy was detected in the defects. Conclusions: Osteochondral defects of the medial femoral condyle of the sheep heal via endochondral ossification, with neocartilage first appearing adjacent to damaged cartilage. Unlike the mechanism of healing in fracture repair, neocartilage is eventually formed directly onto damaged bone. There was most variability between animals between 8 and 12 weeks postsurgery. These results should be considered when designing devices to promote defect healing

    Delivering rhFGF-18 via a bilayer collagen membrane to enhance microfracture treatment of chondral defects in a large animal model.

    Get PDF
    Augmented microfracture techniques use growth factors, cells, and/or scaffolds to enhance the healing of microfracture-treated cartilage defects. This study investigates the effect of delivering recombinant human fibroblastic growth factor 18 (rhFHF18, Sprifermin) via a collagen membrane on the healing of a chondral defect treated with microfracture in an ovine model. Eight millimeter diameter chondral defects were created in the medial femoral condyle of 40 sheep (n = 5/treatment group). Defects were treated with microfracture alone, microfracture + intra-articular rhFGF-18 or microfracture + rhFGF-18 delivered on a membrane. Outcome measures included mechanical testing, weight bearing, International Cartilage Repair Society repair score, modified O'Driscoll score, qualitative histology, and immunohistochemistry for types I and II collagen. In animals treated with 32 μg rhFGF-18 + membrane and intra-articularly, there was a statistically significant improvement in weight bearing at 2 and 4 weeks post surgery and in the modified O'Driscoll score compared to controls. In addition, repair tissue stained was more strongly stained for type II collagen than for type I collagen. rhFGF-18 delivered via a collagen membrane at the point of surgery potentiates the healing of a microfracture treated cartilage defect.This is the author accepted manuscript. The final version is available via Wiley at http://onlinelibrary.wiley.com/doi/10.1002/jor.22882/abstract

    The use of scaffolds in musculoskeletal tissue engineering.

    Get PDF
    The use of bioengineering scaffolds remains an integral part of the tissue engineering concept. A significant amount of basic science and clinical research has been focused on the regeneration of musculoskeletal tissues including bone, articular cartilage, meniscus, ligament and tendon. This review aims to provide the reader with a summary of the principals of using material scaffolds in musculoskeletal tissue engineering applications and how these materials may eventually come to be incorporated in clinical practice

    Peripheral blood derived mononuclear cells enhance osteoarthritic human chondrocyte migration.

    Get PDF
    INTRODUCTION: A major problem in cartilage repair is the lack of chondrogenic cells migrating from healthy tissue into defects. Cartilage is essentially avascular and therefore its healing is not considered to involve mononuclear cells. Peripheral blood derived mononuclear cells (PBMC) offer a readily available autologous cell source for clinical use and therefore this study was designed to evaluate the effects of PBMCs on chondrocytes and cartilage. METHODS: Human primary chondrocytes and cartilage tissue explants were taken from patients undergoing total knee replacement (n = 17). Peripheral blood samples were obtained from healthy volunteers (n = 12) and mononuclear cells were isolated by density-gradient centrifugation. Cell migration and chemokinetic potential were measured using a scratch assay, xCELLigence and CyQuant assay. PCR array and quantitative PCR was used to evaluate mRNA expression of 87 cell motility and/or chondrogenic genes. RESULTS: The chondrocyte migration rate was 2.6 times higher at 3 hour time point (p < 0.0001) and total number of migrating chondrocytes was 9.7 times higher (p < 0.0001) after three day indirect PBMC stimulus and 8.2 times higher (p < 0.0001) after three day direct co-culture with PBMCs. A cartilage explant model confirmed that PBMCs also exert a chemokinetic role on ex vivo tissue. PBMC stimulation was found to significantly upregulate the mRNA levels of 2 chondrogenic genes; collagen type II (COL2A1 600-fold, p < 0.0001) and SRY box 9 (SOX9 30-fold, p < 0.0001) and the mRNA levels of 7 genes central in cell motility and migration were differentially regulated by 24h PBMC stimulation. CONCLUSION: The results support the concept that PBMC treatment enhances chondrocyte migration without suppressing the chondrogenic phenotype possibly via mechanistic pathways involving MMP9 and IGF1. In the future, peripheral blood mononuclear cells could be used as an autologous point-ofcare treatment to attract native chondrocytes from the diseased tissue to aid in cartilage repair.The authors would like to kindly acknowledge the PhD studentship from John Insall Foundation US and thank Dr. Nigel Loveridge for his statistical expertise. Dr. John Wardale acknowledges funding from the Technology Strategy Board and OrthoMimetics and Dr. Roger Brooks acknowledges funding from the National Institute for Health Research.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13075-015-0709-

    Peripheral blood derived mononuclear cells enhance the migration and chondrogenic differentiation of multipotent mesenchymal stromal cells.

    Get PDF
    A major challenge in cartilage repair is the lack of chondrogenic cells migrating from healthy tissue into damaged areas and strategies to promote this should be developed. The aim of this study was to evaluate the effect of peripheral blood derived mononuclear cell (PBMC) stimulation on mesenchymal stromal cells (MSCs) derived from the infrapatellar fat pad of human OA knee. Cell migration was measured using an xCELLigence electronic migration chamber system in combination with scratch assays. Gene expression was quantified with stem cell PCR arrays and validated using quantitative real-time PCR (rtPCR). In both migration assays PBMCs increased MSC migration by comparison to control. In scratch assay the wound closure was 55% higher after 3 hours in the PBMC stimulated test group (P = 0.002), migration rate was 9 times faster (P = 0.008), and total MSC migration was 25 times higher after 24 hours (P = 0.014). Analysis of MSCs by PCR array demonstrated that PBMCs induced the upregulation of genes associated with chondrogenic differentiation over 15-fold. In conclusion, PBMCs increase both MSC migration and differentiation suggesting that they are an ideal candidate for inclusion in regenerative medicine therapies aimed at cartilage repair

    Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model.

    Get PDF
    This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC's were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key effect on the derivation of a novel adherent cell population with an MSC-like phenotype. This study presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteochondral defects in the knee avoiding any cell manipulations outside the surgical room.PhD studentship for Niina Hopper was from charitable trust John Insall Foundation US. Dr. John Wardale acknowledges funding from the Technology Strategy Board and industrial partner OrthoMimetics (currently known as Tigenix) and Dr. Roger Brooks acknowledges funding from the National Institute for Health Research for their salaries.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.013393
    • …
    corecore