675 research outputs found
Observation of Feshbach resonances in an ultracold gas of Cr
We have observed Feshbach resonances in elastic collisions between ultracold
Cr atoms. This is the first observation of collisional Feshbach
resonances in an atomic species with more than one valence electron. The zero
nuclear spin of Cr and thus the absence of a Fermi-contact interaction
leads to regularly-spaced resonance sequences. By comparing resonance positions
with multi-channel scattering calculations we determine the s-wave scattering
length of the lowest potentials to be
\unit[112(14)]{a_0}, \unit[58(6)]{a_0} and -\unit[7(20)]{a_0} for S=6, 4,
and 2, respectively, where a_{0}=\unit[0.0529]{nm}.Comment: 4 pages, 2 figures, 1 tabl
NPS Distinguished Professor Awardee, 2014 (Awardee Professor Cynthia E. Irvine)
Distinguished Professor Award. Recipient Professor Cynthia E. Irvine, Department of Computer Science, GSOI
Damagnetization cooling of a gas
We demonstrate demagnetization cooling of a gas of ultracold Cr atoms.
Demagnetization is driven by inelastic dipolar collisions which couple the
motional degrees of freedom to the spin degree. By that kinetic energy is
converted into magnetic work with a consequent temperature reduction of the
gas. Optical pumping is used to magnetize the system and drive continuous
demagnetization cooling. Applying this technique, we can increase the phase
space density of our sample by one order of magnitude, with nearly no atom
loss. This method can be in principle extended to every dipolar system and
could be used to achieve quantum degeneracy via optical means.Comment: 10 pages, 5 figure
NPS Distinguished Professor Awardee, 2015
Distinguished Professor Award. Recipients Professor David S. Yos
NPS Distinguished Professor Awardee, 2014
Distinguished Professor Award. Recipient Professor Uday Apte, GSBP
- …