23 research outputs found
Protein kinase C in synaptic plasticity: changes in the in situ phosphorylation state of identified pre- and postsynaptic substrates
1. 1. Long-term potentiation and its counterpart long-term depression are two forms of activity dependent synaptic plasticity, in which protein kinases and protein phosphatases are essential.
2. 2. B-50/GAP-43 and RC3/neurogranin are two defined neuronal PKC substrates with different synaptic localization. B-50/GAP-43 is a presynaptic protein and RC3/neurogranin is only found at the postsynaptic site. Measuring their phosphorylation state in hippocampal slices, allows us to simultaniously monitor changes in pre- and postsynaptic PKC mediated phosphorylation.
3. 3. Induction of LTP in the CA1 field of the hippocampus is accompanied with an increase in the in situ phosphorylation of both B-50/GAP-43 and RC3/neurogranin, during narrow, partially overlapping, time windows.
4. 4 Pharmacological data show that mGluR stimulation results in an increase in the in situ phosphorylation of B-50/GAP-43 and RC3/neurogranin
Evidence for a rol of calmodulin in calcium-induced noradrenaline release from permeated synaptosomes: effects of calmodulin antibodies and antagonists
The nervous tissue-specific protein B-50 (GAP-43), which has been implicated in the regulation of neurotransmitter release, is a member of a family of atypical calmodulin-binding proteins. To investigate to what extent calmodulin and the interaction between B-50 and calmodulin are involved in the mechanism of Ca2+-induced noradrenaline release, we introduced polyclonal anti-calmodulin antibodies, calmodulin, and the calmodulin antagonists trifluoperazine, W-7, calmidazolium, and polymyxin B into streptolysin-O-permeated synaptosomes prepared from rat cerebral cortex. Anti-calmodulin antibodies, which inhibited Ca2+/calmodulin-dependent protein kinase II autophosphorylation and calcineurin phosphatase activity, decreased Ca2+-induced noradrenaline release from permeated synaptosomes. Exogenous calmodulin failed to modulate release, indicating that if calmodulin is required for vesicle fusion it is still present in sufficient amounts in permeated synaptosomes. Although trifluoperazine, W-7, and calmidazolium inhibited Ca2+-induced release, they also strongly increased basal release. Polymyxin B potently inhibited Ca2+-induced noradrenaline release without affecting basal release. It is interesting that polymyxin B was also the only antagonist affecting the interaction between B-50 and calmodulin, thus lending further support to the hypothesis that B-50 serves as a local Ca2+-sensitive calmodulin store underneath the plasma membrane in the mechanism of neurotransmitter release. We conclude that calmodulin plays an important role in vesicular noradrenaline release, probably by activating Ca2+/calmodulin-dependent enzymes involved in the regulation of one or more steps in the release mechanism
Monoclonal antibody NM2 recognizes the protein kinase C phosphorylation site in B-50 (GAP-43) and in neurogranin (BICKS)
Mouse monoclonal B-50 antibodies (Mabs) were screened to select a Mab that may interfere with suggested functions of B-50 (GAP-43), such as involvement in neurotransmitter release. Because the Mab NM2 reacted with peptide fragments of rat B-50 containing the unique protein kinase C (PKC) phosphorylation site at serine-41, it was selected and characterized in comparison with another Mab NM6 unreactive with these fragments. NM2, but not NM6, recognized neurogranin (BICKS), another PKC substrate, containing a homologous sequence to rat B-50 (34-52). To narrow down the epitope domain synthetic B-50 peptides were tested in ELISAs. In contrast to NM6, NM2 immunoreacted with B-50 (39-51) peptide, but not with B-50 (43-51) peptide or a C-terminal B-50 peptide. Preabsorption by B-50 (39-51) peptide of NM2 inhibited the binding of NM2 to rat B-50 in contrast to NM6. NM2 selectively inhibited phosphorylation of B-50 during endogenous phosphorylation of synaptosomal plasma membrane proteins. Preabsorption of NM2 by B-50 (39-51) peptide abolished this inhibition. In conclusion, NM2 recognizes the QASFR peptide in B-50 and neurogranin. Therefore, NM2 may be a useful tool in physiological studies of the role of PKC-mediated phosphorylation and calmodulin binding of B-50 and neurogranin