7 research outputs found

    Is callose a barrier for lead ions entering Lemna minor L. root cells?

    Get PDF
    Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy

    Distinct expression, localization and function of two Rab7 proteins encoded by paralogous genes in a free-living model eukaryote

    No full text
    Rab7 GTPases are involved in membrane trafficking in the late endosomal/lysosomal pathway. In Paramecium octaurelia Rab7a and Rab7b are encoded by paralogous genes. Antipeptide antibodies generated against divergent C-termini recognize Rab7a of 22.5 kDa and Rab7b of 25 kDa, respectively. In 2D gel electrophoresis two immunoreactive spots were identified for Rab7b at pI about 6.34 and about 6.18 and only one spot for Rab7a of pI about 6.34 suggesting post-translational modification of Rab7b. Mass spectrometry revealed eight identical phosphorylated residues in the both proteins. ProQ Emerald staining and ConA overlay of immunoprecipitated Rab7b indicated its putative glycosylation that was further supported by a faster electrophoretic mobility of this protein upon deglycosylation. Such a post-translational modification and substitution of Ala140 in Rab7a for Ser140 in Rab7b may result in distinct targeting to the oral apparatus where Rab7b associates with the microtubular structures as revealed by STED confocal and electron microscopy. Rab7a was mapped to phagosomal compartment. Absolute qReal-Time PCR analysis revealed that expression of Rab7a was 2.6-fold higher than that of Rab7b. Upon latex internalization it was further 2-fold increased for Rab7a and only slightly for Rab7b. Post-transcriptional gene silencing of rab7a suppressed phagosome formation by 70 % and impaired their acidification. Ultrastructural analysis with double immunogold labeling revealed that this effect was due to the lack of V-ATPase recruitment to phagolysosomes. No significant phenotype changes were noticed in cells upon rab7b silencing. In conclusion, Rab7b acquired a new function, whereas Rab7a can be assigned to the phagolysosomal pathway

    Assessment of the State of the Natural Antioxidant Barrier of a Body in Patients Complaining about the Presence of Tinnitus

    No full text
    Background. Tinnitus is defined as a phantom auditory perception, i.e., sound experience despite the lack of acoustic stimuli in the environment. The aim of this study was to assess the state of the natural antioxidant barrier of a body in patients complaining about the presence of tinnitus. Material and Methods. The study included a total of 51 patients aged from 20 to 62 years with diagnosed idiopathic tinnitus and 19 healthy subjects as a control group. All patients underwent the audiometric tone test, speech audiometry, distortion otoacoustic emission product testing, study of evoked auditory potentials of short latency, and biochemical analysis of venous blood concerning values of activity or concentration of glutathione, glutathione peroxidase, S-transferase, glutathione reductase superoxide dismutase, malondialdehyde, and ceruloplasmin as the selected parameters of oxidative stress. Results. Disorders of the auditory pathway were not only limited to the cochlea but also covered its further episodes. Mean values of activity or concentration of the selected parameters of oxidative stress in the study and control groups showed reduced effectiveness of the body’s natural antioxidant barrier. Discussion. Patients complaining about the presence of tinnitus showed reduced effectiveness of the body’s natural antioxidant barrier compared to the control group. Conclusions. The main indication to undertake further research on the functioning of the antioxidant barrier in people suffering from ailments in the form of tinnitus is to determine a suitable therapy aimed at improving the quality of life of these patients, which might be the administration of antioxidant medications
    corecore