22,708 research outputs found
Fractional chemotaxis diffusion equations
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macromolecular crowding or other obstacles
Fractional Chemotaxis Diffusion Equations
We introduce mesoscopic and macroscopic model equations of chemotaxis with
anomalous subdiffusion for modelling chemically directed transport of
biological organisms in changing chemical environments with diffusion hindered
by traps or macro-molecular crowding. The mesoscopic models are formulated
using Continuous Time Random Walk master equations and the macroscopic models
are formulated with fractional order differential equations. Different models
are proposed depending on the timing of the chemotactic forcing.
Generalizations of the models to include linear reaction dynamics are also
derived. Finally a Monte Carlo method for simulating anomalous subdiffusion
with chemotaxis is introduced and simulation results are compared with
numerical solutions of the model equations. The model equations developed here
could be used to replace Keller-Segel type equations in biological systems with
transport hindered by traps, macro-molecular crowding or other obstacles.Comment: 25page
Seasonal Flight Patterns of Miridae (Hemiptera) in a Southern Illinois Black Walnut Plantation
The seasonal flight patterns of 92 species of Miridae collected in window traps in a southern Illinois black walnut plantation are compared with similar data from a North Carolina black walnut plantation. Flying height distributions and seasonal flight activities of Amblytylus nasutus, Deraeocoris nebulosus, Leptopterna dolabrata, Lopidea heidemanni, Lygus lineolaris, and Plagiognathus politus are considered in detail. Six species are newly recorded for Illinois
Surface width scaling in noise reduced Eden clusters
The surface width scaling of Eden A clusters grown from a single aggregate
site on the square lattice is investigated as a function of the noise reduction
parameter. A two-exponent scaling ansatz is introduced and used to fit the
results from simulations covering the range from fully stochastic to the
zero-noise limit.Comment: 4 pages, RevTex, 3 figure
Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces
We have derived a fractional Fokker-Planck equation for subdiffusion in a
general space-and- time-dependent force field from power law waiting time
continuous time random walks biased by Boltzmann weights. The governing
equation is derived from a generalized master equation and is shown to be
equivalent to a subordinated stochastic Langevin equation.Comment: 5 page
The Asymmetric Effects of Uncertainty on Inflation and Output Growth
We study the effects of growth volatility and inflation volatility on average rates of output growth and inflation for post-war U.S. data. Our results suggest that growth uncertainty is associated with higher average growth and lower average inflation. Inflation uncertainty is significantly negatively correlated with both output growth and average inflation. Both inflation and growth display evidence of significant asymmetric response to positive and negative shocks of equal magnitude.growth, inflation, uncertainty, asymmetry, generalised impluse response functions
Effect of Photobiomodulation on Vinblastine-Poisoned Murine HERS Cells
Objective: The aim of this study was to investigate the effect of near-infrared (NIR) photobiomodulation on the proliferation and glutathione levels in murine Hertwig\u27s epithelial root sheath (HERS) cells after poisoning with vinblastine. Background: Photobiomodulation has been shown to improve wound healing in a number of animal models. There have been no studies on the effect of photobiomodulation on cancer-related chemotherapy injury to the cells that initiate tooth root growth. Materials and Methods: Control groups consisted of murine HERS cells without vinblastine (VB−) and cells with vinblastine at 10, 20, and 30 ng/mL (VB10, VB20, and VB30). Experimental groups consisted of these same groups with light therapy (VB-L, VB10L, VB20L, and VB30L). The cells were exposed to vinblastine for 1 h. Photobiomodulation consisted of a 75-cm2 gallium-aluminum-arsenide light-emitting diode (LED) array at an energy density of 12.8 J/cm2, delivered with 50 mW/cm2 power over 256 s. Results: Vinblastine alone significantly decreased HERS cell proliferation and glutathione levels at all concentrations (VB10 [−55%, p \u3c 1.0 × 10−8]; VB20 [−72%, p \u3c 1.0 × 10−9]; VB30 [−80%, p \u3c 1.0 × 10−10]; and VB10 [−36%, p \u3c 0.0001]; VB20 [−49%, p \u3c 1.0 × 10−6]; VB30 [−53%, p \u3c 1.0 × 10−7] respectively). Photobiomodulation significantly increased cell proliferation at all levels of vinblastine exposure (VB10L [+50%, p \u3c 0.0001]; VB20L [+45%, p \u3c 0.05]; VB30 [+39%, p \u3c 0.05]) but not of the control (+22%, p  = 0.063). The photobiomodulation significantly increased glutathione production in all concentrations of vinblastine except 20 ng/mL (VB10L [+39%, p = 0.007]; VB20L [+19%, p = 0.087]; VB30 [+14%, p = 0.025]) and the control (+12%, p = 0.13). Conclusions: Photobiomodulation demonstrated an improvement in proliferation and glutathione levels in vinblastine-poisoned murine HERS cells
The stellar populations of spiral disks.II Measuring and modeling the radial distribution of absorption spectral indices
The radial distributions of the Mg2 and Fe5270 Lick spectral indices have
been measured to large radial distances on the disks of NGC 4303 and NGC 4535
using an imaging technique based on interference filters. These data, added to
those of NGC 4321 previously published in Paper I of this series are used to
constraint chemical (multiphase) evolutionary models for these galaxies.
Because the integrated light of a stellar disk is a time average over the
history of the galaxy weighted by the star formation rate, these constraints
complement the information on chemical gradients provided by the study of HII
regions which, by themselves, can only provide the alpha-elements abundance
accumulate over the life of the galaxy. The agreement between the observations
and the model predictions shown here lends confidence to the models which are
then used to describe the time evolution of galaxy parameters such as star
formation rates, chemical gradients, and gradients in the mean age of the
stellar population.Comment: to be published in Astrophysical Journa
- …