26 research outputs found

    Stochastic to deterministic crossover of fractal dimension for a Langevin equation

    Full text link
    Using algorithms of Higuchi and of Grassberger and Procaccia, we study numerically how fractal dimensions cross over from finite-dimensional Brownian noise at short time scales to finite values of deterministic chaos at longer time scales for data generated from a Langevin equation that has a strange attractor in the limit of zero noise. Our results suggest that the crossover occurs at such short time scales that there is little chance of finite-dimensional Brownian noise being incorrectly identified as deterministic chaos.Comment: 12 pages including 3 figures, RevTex and epsf. To appear Phys. Rev. E, April, 199

    Karhunen-Lo`eve Decomposition of Extensive Chaos

    Full text link
    We show that the number of KLD (Karhunen-Lo`eve decomposition) modes D_KLD(f) needed to capture a fraction f of the total variance of an extensively chaotic state scales extensively with subsystem volume V. This allows a correlation length xi_KLD(f) to be defined that is easily calculated from spatially localized data. We show that xi_KLD(f) has a parametric dependence similar to that of the dimension correlation length and demonstrate that this length can be used to characterize high-dimensional inhomogeneous spatiotemporal chaos.Comment: 12 pages including 4 figures, uses REVTeX macros. To appear in Phys. Rev. Let
    corecore