288 research outputs found
Fast and robust curve skeletonization for real-world elongated objects
We consider the problem of extracting curve skeletons of three-dimensional,
elongated objects given a noisy surface, which has applications in agricultural
contexts such as extracting the branching structure of plants. We describe an
efficient and robust method based on breadth-first search that can determine
curve skeletons in these contexts. Our approach is capable of automatically
detecting junction points as well as spurious segments and loops. All of that
is accomplished with only one user-adjustable parameter. The run time of our
method ranges from hundreds of milliseconds to less than four seconds on large,
challenging datasets, which makes it appropriate for situations where real-time
decision making is needed. Experiments on synthetic models as well as on data
from real world objects, some of which were collected in challenging field
conditions, show that our approach compares favorably to classical thinning
algorithms as well as to recent contributions to the field.Comment: 47 pages; IEEE WACV 2018, main paper and supplementary materia
Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks
Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network
Multispecies Fruit Flower Detection Using a Refined Semantic Segmentation Network
In fruit production, critical crop management decisions are guided by bloom intensity, i.e., the number of flowers present in an orchard. Despite its importance, bloom intensity is still typically estimated by means of human visual inspection. Existing automated computer vision systems for flower identification are based on hand-engineered techniques that work only under specific conditions and with limited performance. This letter proposes an automated technique for flower identification that is robust to uncontrolled environments and applicable to different flower species. Our method relies on an end-to-end residual convolutional neural network (CNN) that represents the state-of-the-art in semantic segmentation. To enhance its sensitivity to flowers, we fine-tune this network using a single dataset of apple flower images. Since CNNs tend to produce coarse segmentations, we employ a refinement method to better distinguish between individual flower instances. Without any preprocessing or dataset-specific training, experimental results on images of apple, peach, and pear flowers, acquired under different conditions demonstrate the robustness and broad applicability of our method
Predictive Duty Cycle Adaptation for Wireless Camera Networks
Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN
A Parallel Histogram-based Particle Filter for Object Tracking on SIMD-based Smart Cameras
We present a parallel implementation of a histogram-based particle filter for object tracking on smart cameras based on SIMD processors. We specifically focus on parallel computation of the particle weights and parallel construction of the feature histograms since these are the major bottlenecks in standard implementations of histogram-based particle filters. The proposed algorithm can be applied with any histogram-based feature sets—we show in detail how the parallel particle filter can employ simple color histograms as well as more complex histograms of oriented gradients (HOG). The algorithm was successfully implemented on an SIMD processor and performs robust object tracking at up to 30 frames per second—a performance difficult to achieve even on a modern desktop computer
Calibration of Asynchronous Camera Networks: CALICO
Camera network and multi-camera calibration for external parameters is a
necessary step for a variety of contexts in computer vision and robotics,
ranging from three-dimensional reconstruction to human activity tracking. This
paper describes CALICO, a method for camera network and/or multi-camera
calibration suitable for challenging contexts: the cameras may not share a
common field of view and the network may be asynchronous. The calibration
object required is one or more rigidly attached planar calibration patterns,
which are distinguishable from one another, such as aruco or charuco patterns.
We formulate the camera network and/or multi-camera calibration problem using
rigidity constraints, represented as a system of equations, and an approximate
solution is found through a two-step process. Simulated and real experiments,
including an asynchronous camera network, multicamera system, and rotating
imaging system, demonstrate the method in a variety of settings. Median
reconstruction accuracy error was less than mm for all datasets.
This method is suitable for novice users to calibrate a camera network, and the
modularity of the calibration object also allows for disassembly, shipping, and
the use of this method in a variety of large and small spaces.Comment: 11 page
Tracking Passengers and Baggage Items using Multi-camera Systems at Security Checkpoints
We introduce a novel tracking-by-detection framework to track multiple
objects in overhead camera videos for airport checkpoint security scenarios
where targets correspond to passengers and their baggage items. Our approach
improves object detection by employing a test-time data augmentation procedure
that provides multiple geometrically transformed images as inputs to a
convolutional neural network. We cluster the multiple detections generated by
the network using the mean-shift algorithm. The multiple hypothesis tracking
algorithm then keeps track of the temporal identifiers of the targets based on
the cluster centroids. Our method also incorporates a trajectory association
mechanism to maintain the consistency of the temporal identifiers as passengers
travel across camera views. Finally, we also introduce a simple distance-based
matching mechanism to associate passengers with their luggage. An evaluation of
detection, tracking, and association performances on videos obtained from
multiple overhead cameras in a realistic airport checkpoint environment
demonstrates the effectiveness of the proposed approach.Comment: 14 pages, 11 figure
- …