30,065 research outputs found
A model for hierarchical patterns under mechanical stresses
We present a model for mechanically-induced pattern formation in growing
biological tissues and discuss its application to the development of leaf
venation networks. Drawing an analogy with phase transitions in solids, we use
a phase field method to describe the transition between two states of the
tissue, e.g. the differentiation of leaf veins, and consider a layered system
where mechanical stresses are generated by differential growth. We present
analytical and numerical results for one-dimensional systems, showing that a
combination of growth and irreversibility gives rise to hierarchical patterns.
Two-dimensional simulations suggest that such a mechanism could account for the
hierarchical, reticulate structure of leaf venation networks, yet point to the
need for a more detailed treatment of the coupling between growth and
mechanical stresses.Comment: To appear in Philosophical Magazine. 18 pages, 8 figure
Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy
An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement
Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley 20-inch Mach 6 air tunnel
Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbier are presented without analysis. The tests were completed in the Langley 20-Inch Mach 6 Tunnel. The 0.04-scale model was tested at angles of attack from 0 to 35 and angles of sideslip from 0 to -4. The 0.02-scale model was tested at angles of attack from -10 to 45 and angles of sideslip from 0 to -4. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel to models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation had provided a means for comparisons between reentry flight pressure data and wind-tunnel data
Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley continuous flow hypersonic tunnel
Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests wre completed in the Langley Continuous Flow Hypersonic Tunnel (CFHT). The 0.04-scale model was tested at angles of attack from -5 deg to 45 deg and angles of sideslip from -3 deg to 3 deg. The 0.02-scale model was tested at angles of attack from -10 deg to 45 deg and angles of sideslip from -5 deg to 5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data
Pressure distributions on a 0.04-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley unitary plan wind tunnel
Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5 deg to 30 deg and angles of sideslip from -5 deg to 5 deg in both test sections. The test Reynolds number was 6.6 x 10 to the 6th power per meter. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data
Voltage-controlled inversion of tunnel magnetoresistance in epitaxial Nickel/Graphene/MgO/Cobalt junctions
We report on the fabrication and characterization of vertical spin-valve
structures using a thick epitaxial MgO barrier as spacer layer and a
graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show
robust and scalable tunnel magnetoresistance, with several changes of sign upon
varying the applied bias voltage. These findings are explained by a model of
phonon-assisted transport mechanisms that relies on the peculiarity of the band
structure and spin density of states at the hybrid graphene|Ni interface
Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings
The authors would like to thank Bill Richardson (Master), the crew of the RRS James Cook, Will Handley and the Holland-I ROV team. We also thank all the specialists in taxonomy that provided important help with identification of species: Professor Paul Tyler (ophiuroids), Dr. Tammy Horton (amphipods), Dr. Graham Oliver (bivalves), Dr. Rob van Soest (sponges), Susan Chambers, Peter Garwood, Sue Hamilton, Raimundo Blanco Pérez (polychaetes). Also we would like to thank Val Johnston (University of Aberdeen) for her contribution to cruise preparations and John Polanski (University of Aberdeen) for his help onboard the RRS James Cook. Special thanks to Dr. Alexios P. Lolas (University of Thessaly, Greece) for all the artwork. Funding for the JC073 cruise was provided by the Natural Environment Research Council (NERC) UK Ocean Acidification (UKOA) research programme’s Benthic Consortium project (NE/H017305/1 to JMR). JMR acknowledges support from Heriot-Watt University’s Environment and Climate Change theme. GK was funded by a Marine Alliance for Science and Technology for Scotland (MASTS) Ph.D. scholarship.Peer reviewedPublisher PD
PBP4: A New Perspective on Staphylococcus aureus β-Lactam Resistance.
β-lactam antibiotics are excellent drugs for treatment of staphylococcal infections, due to their superior efficacy and safety compared to other drugs. Effectiveness of β-lactams is severely compromised due to resistance, which is widespread among clinical strains of Staphylococcus aureus. β-lactams inhibit bacterial cells by binding to penicillin binding proteins (PBPs), which perform the penultimate steps of bacterial cell wall synthesis. Among PBPs of S. aureus, PBP2a has received the most attention for the past several decades due to its preeminent role in conferring both high-level and broad-spectrum resistance to the entire class of β-lactam drugs. Studies on PBP2a have thus unraveled incredible details of its mechanism of action. We have recently identified that an uncanonical, low molecular weight PBP of S. aureus, PBP4, can also provide high-level and broad-spectrum resistance to the entire class of β-lactam drugs at a level similar to that of PBP2a. The role of PBP4 has typically been considered not so important for β-lactam resistance of S. aureus, and as a result its mode of action remains largely unknown. In this article, we review our current knowledge of PBP4 mediating β-lactam resistance in S. aureus
Characterizing stellar populations in spiral disks
It is now possible to measure detailed spectral indices for stellar
populations in spiral disks. We propose to interpret these data using
evolutionary synthesis models computed from the Star Formation Histories
obtained from chemical evolutionary models. We find that this technique is a
powerful tool to discriminate between old and young stellar populations. We
show an example of the power of Integral Field spectroscopy in unveiling the
spatial distribution of populations in a barred galaxy.Comment: 5 pages, to be published in "Science Perspectives for 3D
Spectroscopy", Eds. M. Kissler-Patig, M.M. Roth and J.R. Walsh
(Springer-Verlag, ESO astrophysics symposia series
- …