6,362 research outputs found
Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus
Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and muCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research
Ground states and formal duality relations in the Gaussian core model
We study dimensional trends in ground states for soft-matter systems.
Specifically, using a high-dimensional version of Parrinello-Rahman dynamics,
we investigate the behavior of the Gaussian core model in up to eight
dimensions. The results include unexpected geometric structures, with
surprising anisotropy as well as formal duality relations. These duality
relations suggest that the Gaussian core model possesses unexplored symmetries,
and they have implications for a broad range of soft-core potentials.Comment: 7 pages, 1 figure, appeared in Physical Review E (http://pre.aps.org
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model
We investigate the primordial trispectra of the general multifield DBI
inflationary model. In contrast with the single field model, the entropic modes
can source the curvature perturbations on the super horizon scales, so we
calculate the contributions from the interaction of four entropic modes
mediating one adiabatic mode to the trispectra, at the large transfer limit
(). We obtained the general form of the 4-point correlation
functions, plotted the shape diagrams in two specific momenta configurations,
"equilateral configuration" and "specialized configuration". Our figures showed
that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA
Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.
Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality
The Trispectrum in the Multi-brid Inflation
The trispectrum is at least as important as the bispectrum and its size can
be characterized by two parameters and . In this short
paper, we focus on the Multi-brid inflation, in particular the two-brid
inflation model in arXiv.0805.0974, and find that is always
positive and roughly equals to for the low scale
inflation, but can be negative or positive and its order of magnitude
can be the same as that of or even largerComment: 12 pages; minor correction, refs added; further refs added, version
for publication in JCA
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
In the context of bubble universes produced by a first-order phase transition
with large nucleation rates compared to the inverse dynamical time scale of the
parent bubble, we extend the usual analysis to non-vacuum backgrounds. In
particular, we provide semi-analytic and numerical results for the modified
nucleation rate in FLRW backgrounds, as well as a parameter study of bubble
walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the
thin-wall approximation. We show that in our model, matter in the background
often prevents bubbles from successful expansion and forces them to collapse.
For cases where they do expand, we give arguments why the effects on the
interior spacetime are small for a wide range of reasonable parameters and
discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio
Structural Evolution of Early-type Galaxies to z=2.5 in CANDELS
Projected axis ratio measurements of 880 early-type galaxies at redshifts
1<z<2.5 selected from CANDELS are used to reconstruct and model their intrinsic
shapes. The sample is selected on the basis of multiple rest-frame colors to
reflect low star-formation activity. We demonstrate that these galaxies as an
ensemble are dust-poor and transparent and therefore likely have smooth light
profiles, similar to visually classified early-type galaxies. Similar to their
present-day counterparts, the z>1 early-type galaxies show a variety of
intrinsic shapes; even at a fixed mass, the projected axis ratio distributions
cannot be explained by the random projection of a set of galaxies with very
similar intrinsic shapes. However, a two-population model for the intrinsic
shapes, consisting of a triaxial, fairly round population, combined with a flat
(c/a~0.3) oblate population, adequately describes the projected axis ratio
distributions of both present-day and z>1 early-type galaxies. We find that the
proportion of oblate versus triaxial galaxies depends both on the galaxies'
stellar mass, and - at a given mass - on redshift. For present-day and z<1
early-type galaxies the oblate fraction strongly depends on galaxy mass. At z>1
this trend is much weaker over the mass range explored here
(10^10<M*/M_sun<10^11), because the oblate fraction among massive (M*~10^11
M_sun) was much higher in the past: 0.59+-0.10 at z>1, compared to 0.20+-0.02
at z~0.1. In contrast, the oblate fraction among low-mass early-type galaxies
(log(M*/M_sun)1 to
0.72+-0.06 at z=0. [Abridged]Comment: accepted for publication in ApJ; 14 pages; 10 figures; 4 table
- …