37,374 research outputs found
Cl-rich minerals in Archean granulite facies ironstones from the Beartooth Mountains, Montana, USA: Implications for fluids involved in granulite metamorphism
The implications of Cl-rich minerals in granulite facies rocks are discussed. Results from ironstones of the Beartooth Mountains, Montana are discussed. It is suggested that CO2-brine immiscibility might be applicable to granulite facies conditions, and if so, then aqueous brines might be preferentially adsorbed onto mineral surfaces relative to CO2
Metamorphic fluids and uplift-erosion history of a portion of the Kapuskasing structural zone, Ontario, as deduced from fluid inclusions
Fluid inclusions can be used to determine the compositional evolution of fluids present in high grade metamorphic rocks (Touret, 1979) along with the general P-T path followed by the rocks during uplift and erosion (Hollister et al., 1979). In this context, samples of high grade gneisses from the Kapuskasing structural zone (KSZ, Fig. 1) of eastern Ontario were studied in an attempt to define the composition of syn- and post-metamorphic fluids and help constrain the uplift and erosion history of the KSZ. Recent work by Percival (1980), Percival and Card (1983) and Percival and Krogh (1983) shows that the KSZ represents lower crustal granulites that form the lower portion of an oblique cross section through the Archean crust, which was up faulted along a northeast striking thrust fault. The present fluid inclusion study places constraints upon the P-T path which the KSZ followed during uplift and erosion
Recommended from our members
Do children use different forms of verbal rehearsal in serial picture recall tasks? A multi-method study
Use of verbal rehearsal is a key issue in memory development. However, we still lack detailed and triangulated information about the early development and the circumstances in which different forms of rehearsal are used. To further understand significant factors that affect children’s use of various forms of rehearsal, the present study involving 108 primary school children adopted a multi-method approach. It combined a carefully chosen word length effect method with a self-paced presentation time method to obtain behavioural indicators of verbal rehearsal. In addition, subsequent trial-by-trial self-reports were gathered. Word length effects in recall suggested that phonological recoding (converting images to names - a necessary precursor for rehearsal) took place, with evidence of more rehearsal among children with higher performance levels. According to self-paced presentation times, cumulative rehearsal was the dominant form of rehearsal only for children with higher spans on difficult trials. The combined results of self-paced times and word length effects in recall suggest that ‘naming’ as simple form of rehearsal was dominant for most children. Self-reports were in line with these conclusions. Additionally, children used a mixture of strategies with considerable intra-individual variability, yet strategy use was nevertheless linked to age as well as performance levels
Ga^+ beam lithography for nanoscale silicon reactive ion etching
By using a dry etch chemistry which relies on the highly preferential etching of silicon, over that of gallium (Ga), we show resist-free fabrication of precision, high aspect ratio nanostructures and microstructures in silicon using a focused ion beam (FIB) and an inductively coupled plasma reactive ion etcher (ICP-RIE). Silicon etch masks are patterned via Ga^+ ion implantation in a FIB and then anisotropically etched in an ICP-RIE using fluorinated etch chemistries. We determine the critical areal density of the implanted Ga layer in silicon required to achieve a desired etch depth for both a Pseudo Bosch (SF_6/C_4F_8) and cryogenic fluorine (SF_6/O_2) silicon etching. High fidelity nanoscale structures down to 30 nm and high aspect ratio structures of 17:1 are demonstrated. Since etch masks may be patterned on uneven surfaces, we utilize this lithography to create multilayer structures in silicon. The linear selectivity versus implanted Ga density enables grayscale lithography. Limits on the ultimate resolution and selectivity of Ga lithography are also discussed
The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model
In this numerical study, we investigate the role of intrinsic heterogeneities
of cardiac tissue due to M cells in the generation and maintenance of reentrant
excitations using the detailed Luo-Rudy dynamic model. This model has been
extended to include a description of the long QT 3 syndrome, and is studied in
both one dimension, corresponding to a cable traversing the ventricular wall,
and two dimensions, representing a transmural slice. We focus on two possible
mechanisms for the generation of reentrant events. We first investigate if
early-after-depolarizations occurring in M cells can initiate reentry. We find
that, even for large values of the long QT strength, the electrotonic coupling
between neighboring cells prevents early-after-depolarizations from creating a
reentry. We then study whether M cell domains, with their slow repolarization,
can function as wave blocks for premature stimuli. We find that the inclusion
of an M cell domain can result in some cases in reentrant excitations and we
determine the lifetime of the reentry as a function of the size and geometry of
the domain and of the strength of the long QT syndrome
- …