502 research outputs found

    Archeops' results on the Cosmic Microwave Background

    Full text link
    Archeops is a balloon--borne experiment dedicated to the measurement of the temperature anisotropies of the cosmic microwave background (CMB) from large angular scales to about 10 arcminutes. A brief introduction to the CMB is given below, followed by a description of the Archeops experiment. Archeops flew on the 7th of February 2002 in the Arctic night from Kiruna (Sweden) to Russia. The analysis of part of these data is described below with the results on the CC_\ell spectrum, showing for the first time a continuous link between the large scales and the first acoustic peak. We end up with constraints on the cosmological parameters. We confirm the flatness of the Universe. And, combining the Archeops data with other CMB experiments data and with the HST measurement of H0H_0, we measure for the first time ΩΛ\Omega_{\Lambda} independently of SuperNovae based results.Comment: Proceeding of the Moriond ElectroWeak 2003 conferenc

    Agnostic cosmology in the CAMEL framework

    Full text link
    Cosmological parameter estimation is traditionally performed in the Bayesian context. By adopting an "agnostic" statistical point of view, we show the interest of confronting the Bayesian results to a frequentist approach based on profile-likelihoods. To this purpose, we have developed the Cosmological Analysis with a Minuit Exploration of the Likelihood ("CAMEL") software. Written from scratch in pure C++, emphasis was put in building a clean and carefully-designed project where new data and/or cosmological computations can be easily included. CAMEL incorporates the latest cosmological likelihoods and gives access from the very same input file to several estimation methods: (i) A high quality Maximum Likelihood Estimate (a.k.a "best fit") using MINUIT ; (ii) profile likelihoods, (iii) a new implementation of an Adaptive Metropolis MCMC algorithm that relieves the burden of reconstructing the proposal distribution. We present here those various statistical techniques and roll out a full use-case that can then used as a tutorial. We revisit the Λ\LambdaCDM parameters determination with the latest Planck data and give results with both methodologies. Furthermore, by comparing the Bayesian and frequentist approaches, we discuss a "likelihood volume effect" that affects the optical reionization depth when analyzing the high multipoles part of the Planck data. The software, used in several Planck data analyzes, is available from http://camel.in2p3.fr. Using it does not require advanced C++ skills.Comment: Typeset in Authorea. Online version available at: https://www.authorea.com/users/90225/articles/104431/_show_articl

    Relieving tensions related to the lensing of CMB temperature power spectra

    Full text link
    The angular power spectra of the cosmic microwave background (CMB) temperature anisotropies reconstructed from Planck data seem to present too much gravitational lensing distortion. This is quantified by the control parameter ALA_L that should be compatible with unity for a standard cosmology. With the Class Boltzmann solver and the profile-likelihood method, for this parameter we measure a 2.6σ\sigma shift from 1 using the Planck public likelihoods. We show that, owing to strong correlations with the reionization optical depth τ\tau and the primordial perturbation amplitude AsA_s, a 2σ\sim2\sigma tension on τ\tau also appears between the results obtained with the low (30\ell\leq 30) and high (30<250030<\ell\lesssim 2500) multipoles likelihoods. With Hillipop, another high-\ell likelihood built from Planck data, this difference is lowered to 1.3σ1.3\sigma. In this case, the ALA_L value is still in disagreement with unity by 2.2σ2.2\sigma, suggesting a non-trivial effect of the correlations between cosmological and nuisance parameters. To better constrain the nuisance foregrounds parameters, we include the very high \ell measurements of the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments and obtain AL=1.03±0.08A_L = 1.03 \pm 0.08. The Hillipop+ACT+SPT likelihood estimate of the optical depth is τ=0.052±0.035,\tau=0.052\pm{0.035,} which is now fully compatible with the low \ell likelihood determination. After showing the robustness of our results with various combinations, we investigate the reasons for this improvement that results from a better determination of the whole set of foregrounds parameters. We finally provide estimates of the Λ\LambdaCDM parameters with our combined CMB data likelihood.Comment: accepted by A&

    About the connection between the CC_{\ell} power spectrum of the Cosmic Microwave Background and the Γm\Gamma_{m} Fourier spectrum of rings on the sky

    Full text link
    In this article we present and study a scaling law of the mΓmm\Gamma_m CMB Fourier spectrum on rings which allows us (i) to combine spectra corresponding to different colatitude angles (e.g. several detectors at the focal plane of a telescope), and (ii) to recover the ClC_l power spectrum once the Γm\Gamma_m coefficients have been measured. This recovery is performed numerically below the 1% level for colatitudes Θ>80\Theta> 80^\circ degrees. In addition, taking advantage of the smoothness of the ClC_l and of the Γm\Gamma_m, we provide analytical expressions which allow to recover one of the spectrum at the 1% level, the other one being known.Comment: 8 pages, 8 figure

    In situ commissioning of the ATLAS electromagnetic calorimeter with cosmic muons

    Get PDF
    In 2006, ATLAS entered the {\it in situ} commissioning phase. The primary goal of this phase is to verify the detector operation and performance with cosmic muons. Using a dedicated cosmic muon trigger from the hadronic Tile calorimeter, a sample of approximately 120000120\,000 events was collected in several modules of the barrel electromagnetic (EM) calorimeter between August 2006 and March 2007. As cosmic events are generally non-projective and arrive asynchronously with respect to the trigger clock, methods to improve the standard signal reconstruction for this situation are presented. Various selection criteria for projective muons and clustering algorithms have been tested, leading to preliminary results on calorimeter uniformity in η\eta and timing performance

    The optical design of the Litebird middle and high frequency telescope

    Get PDF
    LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation

    Les Houches 2015: Physics at TeV colliders - new physics working group report

    Get PDF
    We present the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments. Important signatures for searches for natural new physics at the LHC and new assessments of the interplay between direct dark matter searches and the LHC are also considered.Comment: Proceedings of the New Physics Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 197 page

    First Detection of Polarization of the Submillimetre Diffuse Galactic Dust Emission by Archeops

    Get PDF
    We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon--borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 GHz and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I, Q, U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 microns). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100, 120] and [180, 200] deg. with a degree of polarization at the level of 4-5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10-20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.Comment: Submitted to Astron. & Astrophys., 14 pages, 12 Fig., 2 Table

    Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF
    We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)Comment: accepted by A&
    corecore