502 research outputs found
Archeops' results on the Cosmic Microwave Background
Archeops is a balloon--borne experiment dedicated to the measurement of the
temperature anisotropies of the cosmic microwave background (CMB) from large
angular scales to about 10 arcminutes. A brief introduction to the CMB is given
below, followed by a description of the Archeops experiment. Archeops flew on
the 7th of February 2002 in the Arctic night from Kiruna (Sweden) to Russia.
The analysis of part of these data is described below with the results on the
spectrum, showing for the first time a continuous link between the
large scales and the first acoustic peak. We end up with constraints on the
cosmological parameters. We confirm the flatness of the Universe. And,
combining the Archeops data with other CMB experiments data and with the HST
measurement of , we measure for the first time
independently of SuperNovae based results.Comment: Proceeding of the Moriond ElectroWeak 2003 conferenc
Agnostic cosmology in the CAMEL framework
Cosmological parameter estimation is traditionally performed in the Bayesian
context. By adopting an "agnostic" statistical point of view, we show the
interest of confronting the Bayesian results to a frequentist approach based on
profile-likelihoods. To this purpose, we have developed the Cosmological
Analysis with a Minuit Exploration of the Likelihood ("CAMEL") software.
Written from scratch in pure C++, emphasis was put in building a clean and
carefully-designed project where new data and/or cosmological computations can
be easily included.
CAMEL incorporates the latest cosmological likelihoods and gives access from
the very same input file to several estimation methods: (i) A high quality
Maximum Likelihood Estimate (a.k.a "best fit") using MINUIT ; (ii) profile
likelihoods, (iii) a new implementation of an Adaptive Metropolis MCMC
algorithm that relieves the burden of reconstructing the proposal distribution.
We present here those various statistical techniques and roll out a full
use-case that can then used as a tutorial. We revisit the CDM
parameters determination with the latest Planck data and give results with both
methodologies. Furthermore, by comparing the Bayesian and frequentist
approaches, we discuss a "likelihood volume effect" that affects the optical
reionization depth when analyzing the high multipoles part of the Planck data.
The software, used in several Planck data analyzes, is available from
http://camel.in2p3.fr. Using it does not require advanced C++ skills.Comment: Typeset in Authorea. Online version available at:
https://www.authorea.com/users/90225/articles/104431/_show_articl
Relieving tensions related to the lensing of CMB temperature power spectra
The angular power spectra of the cosmic microwave background (CMB)
temperature anisotropies reconstructed from Planck data seem to present too
much gravitational lensing distortion. This is quantified by the control
parameter that should be compatible with unity for a standard cosmology.
With the Class Boltzmann solver and the profile-likelihood method, for this
parameter we measure a 2.6 shift from 1 using the Planck public
likelihoods. We show that, owing to strong correlations with the reionization
optical depth and the primordial perturbation amplitude , a
tension on also appears between the results obtained with
the low () and high () multipoles
likelihoods. With Hillipop, another high- likelihood built from Planck
data, this difference is lowered to . In this case, the value
is still in disagreement with unity by , suggesting a non-trivial
effect of the correlations between cosmological and nuisance parameters. To
better constrain the nuisance foregrounds parameters, we include the very high
measurements of the Atacama Cosmology Telescope (ACT) and South Pole
Telescope (SPT) experiments and obtain . The
Hillipop+ACT+SPT likelihood estimate of the optical depth is
which is now fully compatible with the low
likelihood determination. After showing the robustness of our results with
various combinations, we investigate the reasons for this improvement that
results from a better determination of the whole set of foregrounds parameters.
We finally provide estimates of the CDM parameters with our combined
CMB data likelihood.Comment: accepted by A&
About the connection between the power spectrum of the Cosmic Microwave Background and the Fourier spectrum of rings on the sky
In this article we present and study a scaling law of the CMB
Fourier spectrum on rings which allows us (i) to combine spectra corresponding
to different colatitude angles (e.g. several detectors at the focal plane of a
telescope), and (ii) to recover the power spectrum once the
coefficients have been measured. This recovery is performed numerically below
the 1% level for colatitudes degrees. In addition, taking
advantage of the smoothness of the and of the , we provide
analytical expressions which allow to recover one of the spectrum at the 1%
level, the other one being known.Comment: 8 pages, 8 figure
In situ commissioning of the ATLAS electromagnetic calorimeter with cosmic muons
In 2006, ATLAS entered the {\it in situ} commissioning phase. The primary goal of this phase is to verify the detector operation and performance with cosmic muons. Using a dedicated cosmic muon trigger from the hadronic Tile calorimeter, a sample of approximately events was collected in several modules of the barrel electromagnetic (EM) calorimeter between August 2006 and March 2007. As cosmic events are generally non-projective and arrive asynchronously with respect to the trigger clock, methods to improve the standard signal reconstruction for this situation are presented. Various selection criteria for projective muons and clustering algorithms have been tested, leading to preliminary results on calorimeter uniformity in and timing performance
The optical design of the Litebird middle and high frequency telescope
LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation
Les Houches 2015: Physics at TeV colliders - new physics working group report
We present the activities of the 'New Physics' working group for the 'Physics
at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report
includes new physics studies connected with the Higgs boson and its properties,
direct search strategies, reinterpretation of the LHC results in the building
of viable models and new computational tool developments. Important signatures
for searches for natural new physics at the LHC and new assessments of the
interplay between direct dark matter searches and the LHC are also considered.Comment: Proceedings of the New Physics Working Group of the 2015 Les Houches
Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 197 page
First Detection of Polarization of the Submillimetre Diffuse Galactic Dust Emission by Archeops
We present the first determination of the Galactic polarized emission at 353
GHz by Archeops. The data were taken during the Arctic night of February 7,
2002 after the balloon--borne instrument was launched by CNES from the Swedish
Esrange base near Kiruna. In addition to the 143 GHz and 217 GHz frequency
bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz
bolometers mounted in three polarization sensitive pairs that were used for
Galactic foreground studies. We present maps of the I, Q, U Stokes parameters
over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 microns).
They show a significant Galactic large scale polarized emission coherent on the
longitude ranges [100, 120] and [180, 200] deg. with a degree of polarization
at the level of 4-5%, in agreement with expectations from starlight
polarization measurements. Some regions in the Galactic plane (Gem OB1,
Cassiopeia) show an even stronger degree of polarization in the range 10-20%.
Those findings provide strong evidence for a powerful grain alignment mechanism
throughout the interstellar medium and a coherent magnetic field coplanar to
the Galactic plane. This magnetic field pervades even some dense clouds.
Extrapolated to high Galactic latitude, these results indicate that
interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB
polarization measurement.Comment: Submitted to Astron. & Astrophys., 14 pages, 12 Fig., 2 Table
Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters
We present the final results from the XMM-Newton validation follow-up of new
Planck galaxy cluster candidates. We observed 15 new candidates, detected with
signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck
survey. The candidates were selected using ancillary data flags derived from
the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the
aim of pushing into the low SZ flux, high-z regime and testing RASS flags as
indicators of candidate reliability. 14 new clusters were detected by XMM,
including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6
clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We
discuss our results in the context of the full XMM validation programme, in
which 51 new clusters have been detected. This includes 4 double and 2 triple
systems, some of which are chance projections on the sky of clusters at
different z. We find that association with a RASS-BSC source is a robust
indicator of the reliability of a candidate, whereas association with a FSC
source does not guarantee that the SZ candidate is a bona fide cluster.
Nevertheless, most Planck clusters appear in RASS maps, with a significance
greater than 2 sigma being a good indication that the candidate is a real
cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4
arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this
level. The corresponding mass threshold depends on z. Systems with M500 > 5
10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected
clusters follow the YX-Y500 relation derived from X-ray selected samples.
Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray
luminosity on average for their mass. There is no indication of departure from
standard self-similar evolution in the X-ray versus SZ scaling properties.
(abridged)Comment: accepted by A&
- …