67 research outputs found

    Alopecia areata: a multifactorial autoimmune condition

    Get PDF
    Alopecia areata is an autoimmune disease that results in non-scarring hair loss, and it is clinically characterised by small patches of baldness on the scalp and/or around the body. It can later progress to total loss of scalp hair (Alopecia totalis) and/or total loss of all body hair (Alopecia universalis). The rapid rate of hair loss and disfiguration caused by the condition causes anxiety on patients and increases the risks of developing psychological and psychiatric complications. Hair loss in alopecia areata is caused by lymphocytic infiltrations around the hair follicles and IFN-γ. IgG antibodies against the hair follicle cells are also found in alopecia areata sufferers. In addition, the disease coexists with other autoimmune disorders and can come secondary to infections or inflammation. However, despite the growing knowledge about alopecia areata, the aetiology and pathophysiology of disease are not well defined. In this review we discuss various genetic and environmental factors that cause autoimmunity and describe the immune mechanisms that lead to hair loss in alopecia areata patients

    Diagnostic considerations for non-<i>Acanthamoeba</i> amoebic keratitis and clinical outcomes

    Get PDF
    Cases of amoebic keratitis involving species other than Acanthamoeba are hypothesised to be underdiagnosed and poorly understood. Amoebic keratitis is debilitating and associated with chronic visual impairment. Understanding associated symptoms of non-Acanthamoeba amoebic keratitis could facilitate new diagnostic procedures and enable prompt treatment, ultimately leading to improved patient outcomes. Thus, a review of the literature was undertaken surrounding non-Acanthamoeba amoebic keratitis. Cases were geographically widespread and mostly confined to contact lens wearers ≤ 30 years old exposed to contaminated water sources and/or demonstrating poor lens hygiene. Vermamoeba vermiformis (previously Hartmanella vermiformis) was the most common causative agent, and a moderate number of mixed keratitis cases were also reported. A crucial disease indicator was early onset stromal deterioration/ulcerations, reported in 10 of the studies, usually only occurring in advanced Acanthamoeba keratitis. Mixed infections were the most difficult to treat, often requiring keratoplasty after unsuccessful combination treatment regimens. New diagnostic measures for non-Acanthamoeba amoebic keratitis should consider early onset stromal disease as a key disease indicator. Deep corneal scrapes are also necessary for accurate amoebic identification. Moreover, a combination approach to diagnosis is advised and should involve culture, microscopy and PCR techniques. In vitro drug sensitivity tests should also be conducted to help develop patient-specific treatment regimes

    Microbial interactions that contribute to gill disease in aquaculture

    Get PDF
    The rapid growth in the human population has led to an increased requirement for readily available food sources. The aquaculture industry is a fundamental source for maintaining food supplies; however, it is subjected to mounting pressures to meet supply demands. Thus, limiting factors that negatively impact the cultivation of farmed aquatic organisms is essential. Gill disease is an increasing area of concern, resulting in substantial losses in farmed fish. Several microbial pathogens are known to cause gill disease and, in many instances, multiple pathogens or factors can be involved in the disease, resulting in complex gill disease (CGD). The role of mixed infections in gill disease is largely unknown, as such this review aims to examine data on previous infections and highlight the variety of microbes that might be involved in gill disease. The influence of climate change in the context of CGD is also discussed given the strong links between physicochemical extremes and numerous microbial gill pathogens. Understanding these factors will allow for improved diagnostic and therapeutic strategies to be implemented

    Molecular basis for resistance of acanthamoeba tubulins to all major classes of antitubulin compounds

    Get PDF
    Tubulin is essential to eukaryotic cells and is targeted by several antineoplastics, herbicides, and antimicrobials. We demonstrate that Acanthamoeba spp. are resistant to five antimicrotubule compounds, unlike any other eukaryote studied so far. Resistance correlates with critical amino acid differences within the inhibitor binding sites of the tubulin heterodimers

    The effects of nitrate on the oral microbiome:a systematic review investigating prebiotic potential

    Get PDF
    Nitrate (NO3−) has been suggested as a prebiotic for oral health. Evidence indicates dietary nitrate and nitrate supplements can increase the proportion of bacterial genera associated with positive oral health whilst reducing bacteria implicated in oral disease(s). In contrast, chlorhexidine-containing mouthwashes, which are commonly used to treat oral infections, promote dysbiosis of the natural microflora and may induce antimicrobial resistance

    Gene expression during THP-1 differentiation is influenced by vitamin D3 and not vibrational mechanostimulation

    Get PDF
    Background: In injury or infection, monocytes migrate into the affected tissues from circulation and differentiate into macrophages which are subsequently involved in the inflammatory responses. Macrophage differentiation and activation have been studied in response to multiple chemokines and cytokines. However, mechanical, and physical stimuli can also influence macrophage differentiation, activation, cytokine production, and phagocytic activity. Methods: In this study the macrophage differentiation from THP-1 monocytes was assessed upon the stimulation with 1,25-dihydroxyvitamin D3 and 1,000 Hz vibrations, using qPCR for quantification of transcript expression. Vitamin D binds the vitamin D receptor (VDR) and subsequently modulates the expression of a variety of genes in monocytes. The effects of the 1,000 Hz vibrational stimulation, and the combined treatment of vitamin D3 and 1000 Hz vibrations were unknown. The differentiation of macrophages was assessed by looking at transcription of macrophage markers (e.g., CD14, CD36), antigen presenting molecules (e.g., HLA-DRA), transcription factors (e.g., LEF-1, TCF7L2), and mechanosensors (e.g., PIEZO1 and PKD2). Results: The results showed that vitamin D3 induced THP-1 macrophage differentiation, which was characterized by upregulation of CD14 and CD36, downregulation of HLA-DRA, upregulation of the PKD2 (TRPP2), and an inverse relationship between TCF7L2 and LEF-1, which were upregulated and downregulated respectively. The 1,000 Hz vibrations were sensed from the cells which upregulated PIEZO1 and TCF3, but they did not induce expression of genes that would indicate macrophage differentiation. The mRNA transcription profile in the cells stimulated with the combined treatment was comparable to that of the cells stimulated by the vitamin only. The 1,000 Hz vibrations slightly weakened the effect of the vitamin for the regulation of CD36 and HLA-DMB in the suspension cells, but without causing changes in the regulation patterns. The only exception was the upregulation of TCF3 in the suspension cells, which was influenced by the vibrations. In the adherent cells, the vitamin D3 cancelled the upregulating effect of the 1,000 Hz vibrations and downregulated TCF3. The vitamin also cancelled the upregulation of PIEZO1 gene by the 1,000 Hz vibrations in the combined treatment. Conclusion: The mechanical stimulation with 1,000 Hz vibrations resulted in upregulation of PIEZO1 in THP-1 cells, but it did not affect the differentiation process which was investigated in this study. Vitamin D3 induced THP-1 macrophage differentiation and could potentially influence M2 polarization as observed by upregulation of CD36 and downregulation of HLA-DRA. In addition, in THP-1 cells undergoing the combined stimulation, the gene expression patterns were influenced by vitamin D3, which also ablated the effect of the mechanical stimulus on PIEZO1 upregulation

    Acanthamoeba activates macrophages predominantly through toll-like receptor 4 and MyD88-dependent mechanisms to induce Interleukin IL-12 and IL-6

    Get PDF
    Acanthamoeba castellanii is a free-living ubiquitous amoeba, with a worldwide distribution, that can occasionally infect humans, causing particularly severe infections in immune compromised individuals. Dissecting the immunology of Acanthamoeba infections has been considered problematic due to the very low incidence of disease despite the high exposure rates. Whilst macrophages are acknowledged as playing a significant role in Acanthamoeba infections little is known about how this facultative parasite influences macrophage activity. Therefore, in this study we investigate the effects of Acanthamoeba on the activation of resting macrophages. Consequently, murine bone marrow derived macrophages were co-cultured with trophozoites of either the laboratory Neff strain, or a clinical isolate of A. castellanii. In vitro real-time imaging demonstrated that trophozoites of both strains often established evanescent contact with macrophages. Both Acanthamoeba strains induced a pro-inflammatory macrophage phenotype characterized by significant production of IL-12 and IL-6. However, macrophages co-cultured with the clinical isolate of Acanthamoeba produced significantly less IL-12 and IL-6 in comparison to the Neff strain. The utilization of macrophages derived from MyD88, TRIF, TLR2, TLR4, TLR2/4 deficient mice indicated that Acanthamoeba-induced pro-inflammatory cytokine production was through MyD88-dependent, TRIF independent, TLR4-induced events. This study shows for the first time the involvement of TLRs, expressed on macrophages in the recognition and response to Acanthamoeba trophozoites
    corecore