574 research outputs found
The genomic environment around the Aromatase gene: evolutionary insights
BACKGROUND: The cytochrome P450 aromatase (CYP19), catalyses the aromatisation of androgens to estrogens, a key mechanism in vertebrate reproductive physiology. A current evolutionary hypothesis suggests that CYP19 gene arose at the origin of vertebrates, given that it has not been found outside this clade. The human CYP19 gene is located in one of the proposed MHC-paralogon regions (HSA15q). At present it is unclear whether this genomic location is ancestral (which would suggest an invertebrate origin for CYP19) or derived (genomic location with no evolutionary meaning). The distinction between these possibilities should help to clarify the timing of the CYP19 emergence and which taxa should be investigated. RESULTS: Here we determine the "genomic environment" around CYP19 in three vertebrate species Homo sapiens, Tetraodon nigroviridis and Xenopus tropicalis. Paralogy studies and phylogenetic analysis of six gene families suggests that the CYP19 gene region was structured through "en bloc" genomic duplication (as part of the MHC-paralogon formation). Four gene families have specifically duplicated in the vertebrate lineage. Moreover, the mapping location of the different paralogues is consistent with a model of "en bloc" duplication. Furthermore, we also determine that this region has retained the same gene content since the divergence of Actinopterygii and Tetrapods. A single inversion in gene order has taken place, probably in the mammalian lineage. Finally, we describe the first invertebrate CYP19 sequence, from Branchiostoma floridae. CONCLUSION: Contrary to previous suggestions, our data indicates an invertebrate origin for the aromatase gene, given the striking conservation pattern in both gene order and gene content, and the presence of aromatase in amphioxus. We propose that CYP19 duplicated in the vertebrate lineage to yield four paralogues, followed by the subsequent loss of all but one gene in vertebrate evolution. Finally, we suggest that agnathans and lophotrocozoan protostomes should be investigated for the presence of aromatase
Sea bass (Dicentrarchus labrax) : a model organism for assessing multi-level responses to estrogenic chemicals in marine surface waters
Resumo apresentado sob poster ao 5th International Symposium of Fish Endocrinology, CAstellon, Spain, Setember 5-9, 2004.There is growing concern that aquatic wildlife in surface waters of the European Union is exposed to natural and man-made chemicals that have the ability to mimic estrogens and lead to reproductive dysfunction. Estrogenic responses in fish are the net result of complex chains of events involving the uptake, distribution and metabolism of test agents until they interact with their target sites. Typically these aspects cannot be modelled in short-term cell-based assays, only studies with vertebrates offer the opportunity to assess potential interactions of test compounds at higher organisational levels. The most widely studied biological response in fish to environmental estrogens is the production of vitellogenin (Vtg). However, few studies have attempted to link this endpoint with effects on xenobiotic biotransformation enzymes and genotoxic responses. This work is part of a study focusing on the combination effects of mixtures of estrogenic chemicals in marine and freshwater organisms. As test organism the sea bass (Dicentrarchus labrax) was selected, a common species in European marine systems. Juveniles were exposed under a flow-through system for 14 days to the natural estrogen 17ß-estradiol and ethynylestradiol. Actual chemical concentrations in the water-column were determined by gas chromatography with ion trap detection. Effects at subcellular level were analysed using Vtg as a reference endpoint [1]. Its relevance is evaluated by further investigations on liver 7-ethoxyresorufin-O-deethylase (EROD) activity and erythrocytic nuclear abnormalities [2]. These measurements were integrated with organism level endpoints (i.e. condition factor, hepatossomatic index) to provide evidence for cause-effect of estrogenic contamination. The general suitability of the sea bass as a model organism for the screening of estrogenic chemicals in the marine environment is discussed.Comissão Europeia (CE) - ACE, EVK1-CT-2001-100
Evaluation of the potential of collagen from codfish skin as a biomaterial for biomedical applications
Collagen is one of the most widely used biomaterials, not only due its biocompatibility,
biodegradability and weak antigenic potential, but also due to its role in the structure and function of
tissues. Searching for alternative collagen sources, the aim of this study was to extract collagen from
the skin of codfish, previously obtained as a by-product of fish industrial plants, and characterize
it regarding its use as a biomaterial for biomedical application, according to American Society for
Testing and Materials (ASTM) Guidelines. Collagen type I with a high degree of purity was obtained
through acid-extraction, as confirmed by colorimetric assays, SDS-PAGE and amino acid composition.
Thermal analysis revealed a denaturing temperature around 16 C. Moreover, collagen showed a
concentration-dependent effect in metabolism and on cell adhesion of lung fibroblast MRC-5 cells.
In conclusion, this study shows that collagen can be obtained from marine-origin sources, while
preserving its bioactivity, supporting its use in biomedical applications.European Research Council grant agreement ERC-2012-ADG 20120216-321266 for the project ComplexiTEinfo:eu-repo/semantics/publishedVersio
Sea bass (Dicentrarchus labrax) : a model organism for the screening of estrogenic chemicals in marine surface waters?
Society of Environmental Toxicology and Chemistry - SETAC Europe 14th Annual Meeting, Prague, Czech Republic, April 2004.There is growing concern that aquatic wildlife in surface waters of the European Union is exposed to natural and man-made chemicals that have the ability to mimic estrogens and lead to reproductive dysfunction. Estrogenic responses in fish are the net result of complex chains of events involving the uptake, distribution and metabolism of test agents until they interact with their target sites. Typically these aspects cannot be modelled in short-term cell-based assays, only studies with vertebrates offer the opportunity to assess potential interactions of test compounds at higher organisational levels. However, studies with endocrine disrupting chemicals have been performed mainly with freshwater organisms. The sensitivity of a marine fish species to different estrogenic chemicals was investigated under chronic exposure conditions. This work is part of a study focusing on the combination effects of mixtures of estrogenic chemicals in marine and freshwater organisms (ACE, EVK1-CT-2001-100). As test organism the sea bass (Dicentrarchus labrax) was selected, a common species in European marine systems. Juveniles were exposed under a flow-through system for 14 days for a set of reference chemicals (17Ã -estradiol, ethynylestradiol, nonylphenol, octylphenol, bisphenol A). Effects at subcellular level were analysed using vitellogenesis as endpoint. Its relevance is evaluated by further investigations about the individual fitness (condition factor, hepatossomatic index), as well as the liver cytochrome P450 activity. The general suitability of the sea bass as a model organism for the screening of estrogenic chemicals in the marine environment is discussed.Comissãoo Europeia (CE) - ACE, EVK1-CT-2001-100
Sea bass (Dicentrarchus labrax) as a potential bioindicator of estrogenic contamination in marine surface waters
Resumo apresentado sob poster apresentado ao 5th International Symposium on Fish Endocrinology, September, 2004, Castellon, Spain.Exposure of aquatic wildlife in surface waters to (xeno-)estrogens is known to cause reproductive dysfunction. Estrogenic responses in fish are the net result of complex chains of events that will depend on a number of factors, such as bioavailability, bioconcentration/bioaccumulation, and biotransformation. Most of known estrogenic chemicals are lipophilic and hydrophobic and therefore have a strong potential to accumulate in aquatic biota. Therefore, determining environmental exposures may be very difficult and not be particularly meaningful. As test organism the sea bass (Dicentrarchus labrax) was selected, a common species in European marine systems. This work is part of a study focusing on the combination effects of mixtures of estrogenic chemicals in marine and freshwater organisms. Juvenile sea bass were used in order to analyse the bioconcentration and distribution among different tissues of the chemical residues of a set of reference estrogenic chemicals such as 17ß-estradiol (E2), ethynylestradiol (EE2), nonylphenol (NP), octylphenol (OP), bisphenol-A (BPA). Fish were exposed for a period of two weeks to environmentally relevant levels of these compounds, after which liver, bile, muscle, gill and kidney were collected and analyzed. Actual concentrations of E2, EE2 and BPA seawater in the tanks were determined by either gas chromatography with ion trap detection or HPLC coupled to diode array detection. In bile, levels of BPA were determined according to a method presented earlier by Houtman et al. (13th Annual Meeting SETAC Europe, 2003). Actual NP and OP concentrations in both water and tissues were determined by HPLC-ESI-MS according to recently developed methods by Pojana et al. (J. Anal. Chem., in press). Bioconcentration and distribution of residual compounds in tissues were correlated to the levels of plasma vitellogenin (results are presented also at this conference) and to actual exposure concentrations. The general suitability of the sea bass as a bioindicator of estrogenic contamination in the marine environment is discussed.Comissão Europeia (CE) - ACE, EVK1-CT-2001-100
Assessment of hydrocarbon pollution in NW Iberian Peninsula using bioaccumulation and molecular biomarkers in Mytilus galloprovincialis
Society of Environmental Toxicology and Chemistry - SETAC Europe 15th Annual Meeting, Lille, France, May 2005.Polycyclic aromatic hydrocarbons (PAH´s) are ubiquitous contaminants in marine environment as a result of uncontrolled spills, river transport, surface runoff and atmospheric deposition. A significant amount of industrial activity including shipping and oil refining is located along the NW Iberian Peninsula coast. The use of exposure biomarkers holds out promise due to the incipient state of the cost-effective methodologies for diagnosis and monitoring of oil pollution. This work presents the preliminary results concerning the identification of a set of biomarkers for an early warning detection of PAH toxicity. The bivalve Mytillus galloprovincialis was selected due to its ubiquitous distribution along coastline, being used as sentinels in pollution monitoring. This species has also an important value. Four locations in the vicinity of industrial wastewater discharges along the NW Iberian coast were selected and compared with a nearby (reference) site for (i) measurements of PAH body burdens and (ii) levels of enzyme activity: catalase (CAT), superoxide-dismutase (SOD), glutathione peroxidase (GPx), gluthathione S-transferase (GST) and Na+/K+ATPase (ATPase). The results will be discussed on the basis of their potential in providing additional evidence for discriminate between well known polluted and unpolluted sites
The ACE Project: a synopsis of in vivo studies to predict estrogenic mixture effects in freshwater and marine fish
Society of Environmental Toxicology and Chemistry - SETAC Europe 15th Annual Meeting, Lille, France, May 2005.This work is part of the ACE project (ACE, EVK1-CT-2001-100) which aim is to investigate multi-component mixtures of estrogenic compounds in aquatic ecosystems. Here we present a synopsis of in vivo data related with the joint estrogenic action of five estrogenic compounds (17ß-estradiol, ethynylestradiol, nonylphenol, octylphenol and bisphenol-A) on vitellogenesis in fathead minnow (Pimephales promelas) and sea bass (Dicentrarchus labrax). The studies were conducted with freshwater adult males and marine juveniles under flow through exposure conditions for two weeks. In the first step, fish were exposed to the five compounds individually in order to generate concentration- response curves. Therefore mixture effects were predicted on the basis of the potency of each compound by using the model of concentration addition (CA). Finally, the compounds were tested as a mixture at equipotent concentrations, and the observed mixture effects were compared to the predictions. The mixture studies showed an good agreement between observed and predicted effects and provided evidence that CA can be used as a predictive tool for the effect assessment of mixtures of (xeno)estrogens in freshwater or marine ecosystems. The differences/limitations of running in vivo mixture studies with freshwater and marine species will be discussed.Comissão Europeia (CE) - ACE project - ACE, EVK1-CT-2001-100
Estimation of diabetes risk in Brazilian population by typing for polymorphisms in HLA-DR-DQ, INS and CTLA-4 genes
The study aimed to further characterise HLA encoded risk factors of type 1 diabetes (T1D) in Brazilian population and test the capability of a low resolution full-house DR-DQ typing method to find subjects at diabetes risk. Insulin and CTLA-4 gene polymorphisms were also analysed. The method is based on an initial DQB1 typing supplemented by DQA1 and DR4 subtyping when informative. Increased frequencies of both (DR3)-DQA1*05-DQB1*02 and DRB1*04-DQA1*03-DQB1*0302 haplotypes were detected among patients. DRB1*0401, *0402, *0404 and *0405 alleles were all common in DQB1*0302 haplotypes and associated with T1D. (DRB1*11/12/1303)-DQA1*05-DQB1*0301, (DRB1*01/10)-DQB1*0501, (DRB1*15)-DQB1*0602 and (DRB1*1301)-*0603 haplotypes were significantly decreased among patients. Genotypes with two risk haplotypes or a combination of a susceptibility associated and a neutral haplotype were found in 78 of 126 (61.9%) T1D patients compared to 8 of 75 (10.7%) control subjects (P < 0.0001). Insulin gene -2221 C/T polymorphism was also associated with diabetes risk: CC genotype was found among 83.1% of patients compared to 69.3% of healthy controls (P = 0.0369, OR 1.98) but CTLA-4 gene +49 A/G polymorphism did not significantly differ between patients and controls. Despite the diversity of the Brazilian population the screening sensitivity and specificity of the used method for T1D risk was similar to that obtained in Europe.Univ Turku, JDRF Ctr Prevent Type 1 Diabet Finland, Turku, FinlandUNIFESP, Escola Paulista Med, Sao Paulo, BrazilFleury Inst, Sao Paulo, BrazilPerkinElmer Life & Analyt Sci, Turku, FinlandUniv Turku, Dept Virol, Turku, FinlandUNIFESP, Escola Paulista Med, Sao Paulo, BrazilWeb of Scienc
Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties
H2020-ICT-2014-1,TransFlexTeg645241
ERC-CoG-2014, CapTherPV, 647596
Pest-UID/FIS/00068/2013The use of 3D printing of hydrogels as a cell support in bio-printing of cartilage, organs and tissue has attracted much research interest. For cartilage applications, hydrogels as soft materials must show some degree of rigidity, which can be achieved by photo- or chemical polymerization. In this work, we combined chemical and UV laser polymeric cross-linkage to control the mechanical properties of 3D printed hydrogel blends. Since there are few studies on UV laser cross-linking combined with 3D printing of hydrogels, the work here reported offered many challenges.publishe
- …