970 research outputs found

    Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

    Full text link
    Discriminative Correlation Filters (DCF) have demonstrated excellent performance for visual object tracking. The key to their success is the ability to efficiently exploit available negative data by including all shifted versions of a training sample. However, the underlying DCF formulation is restricted to single-resolution feature maps, significantly limiting its potential. In this paper, we go beyond the conventional DCF framework and introduce a novel formulation for training continuous convolution filters. We employ an implicit interpolation model to pose the learning problem in the continuous spatial domain. Our proposed formulation enables efficient integration of multi-resolution deep feature maps, leading to superior results on three object tracking benchmarks: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate). Additionally, our approach is capable of sub-pixel localization, crucial for the task of accurate feature point tracking. We also demonstrate the effectiveness of our learning formulation in extensive feature point tracking experiments. Code and supplementary material are available at http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/index.html.Comment: Accepted at ECCV 201

    Learn what matters: cross-domain imitation learning with task-relevant embeddings

    Get PDF
    We study how an autonomous agent learns to perform a task from demonstrations in a different domain, such as a different environment or different agent. Such cross-domain imitation learning is required to, for example, train an artificial agent from demonstrations of a human expert. We propose a scalable framework that enables cross-domain imitation learning without access to additional demonstrations or further domain knowledge. We jointly train the learner agent's policy and learn a mapping between the learner and expert domains with adversarial training. We effect this by using a mutual information criterion to find an embedding of the expert's state space that contains task-relevant information and is invariant to domain specifics. This step significantly simplifies estimating the mapping between the learner and expert domains and hence facilitates end-to-end learning. We demonstrate successful transfer of policies between considerably different domains, without extra supervision such as additional demonstrations, and in situations where other methods fail

    Long-Term Visual Object Tracking Benchmark

    Full text link
    We propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for single object tracking. The dataset consists of 50 HD videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and train better deep learning architectures (avoiding/reducing augmentation, which may not reflect real world behaviour). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further present thorough qualitative and quantitative evaluation highlighting the importance of long term aspect of tracking. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long-term tracking.Comment: ACCV 2018 (Oral

    Long-term Tracking in the Wild: A Benchmark

    Full text link
    We introduce the OxUvA dataset and benchmark for evaluating single-object tracking algorithms. Benchmarks have enabled great strides in the field of object tracking by defining standardized evaluations on large sets of diverse videos. However, these works have focused exclusively on sequences that are just tens of seconds in length and in which the target is always visible. Consequently, most researchers have designed methods tailored to this "short-term" scenario, which is poorly representative of practitioners' needs. Aiming to address this disparity, we compile a long-term, large-scale tracking dataset of sequences with average length greater than two minutes and with frequent target object disappearance. The OxUvA dataset is much larger than the object tracking datasets of recent years: it comprises 366 sequences spanning 14 hours of video. We assess the performance of several algorithms, considering both the ability to locate the target and to determine whether it is present or absent. Our goal is to offer the community a large and diverse benchmark to enable the design and evaluation of tracking methods ready to be used "in the wild". The project website is http://oxuva.netComment: To appear at ECCV 201

    Siamese network based features fusion for adaptive visual tracking

    Full text link
    © Springer Nature Switzerland AG 2018. Visual object tracking is a popular but challenging problem in computer vision. The main challenge is the lack of priori knowledge of the tracking target, which may be only supervised of a bounding box given in the first frame. Besides, the tracking suffers from many influences as scale variations, deformations, partial occlusions and motion blur, etc. To solve such a challenging problem, a suitable tracking framework is demanded to adopt different tracking scenes. This paper presents a novel approach for robust visual object tracking by multiple features fusion in the Siamese Network. Hand-crafted appearance features and CNN features are combined to mutually compensate for their shortages and enhance the advantages. The proposed network is processed as follows. Firstly, different features are extracted from the tracking frames. Secondly, the extracted features are employed via Correlation Filter respectively to learn corresponding templates, which are used to generate response maps respectively. And finally, the multiple response maps are fused to get a better response map, which can help to locate the target location more accurately. Comprehensive experiments are conducted on three benchmarks: Temple-Color, OTB50 and UAV123. Experimental results demonstrate that the proposed approach achieves state-of-the-art performance on these benchmarks

    Measuring the Accuracy of Object Detectors and Trackers

    Full text link
    The accuracy of object detectors and trackers is most commonly evaluated by the Intersection over Union (IoU) criterion. To date, most approaches are restricted to axis-aligned or oriented boxes and, as a consequence, many datasets are only labeled with boxes. Nevertheless, axis-aligned or oriented boxes cannot accurately capture an object's shape. To address this, a number of densely segmented datasets has started to emerge in both the object detection and the object tracking communities. However, evaluating the accuracy of object detectors and trackers that are restricted to boxes on densely segmented data is not straightforward. To close this gap, we introduce the relative Intersection over Union (rIoU) accuracy measure. The measure normalizes the IoU with the optimal box for the segmentation to generate an accuracy measure that ranges between 0 and 1 and allows a more precise measurement of accuracies. Furthermore, it enables an efficient and easy way to understand scenes and the strengths and weaknesses of an object detection or tracking approach. We display how the new measure can be efficiently calculated and present an easy-to-use evaluation framework. The framework is tested on the DAVIS and the VOT2016 segmentations and has been made available to the community.Comment: 10 pages, 7 Figure

    3D Hand Movement Measurement Framework for Studying Human-Computer Interaction

    Get PDF
    In order to develop better touch and gesture user interfaces, it is important to be able to measure how humans move their hands while interacting with technical devices. The recent advances in high-speed imaging technology and in image-based object tracking techniques have made it possible to accurately measure the hand movement from videos without the need for data gloves or other sensors that would limit the natural hand movements. In this paper, we propose a complete framework to measure hand movements in 3D in human-computer interaction situations. The framework includes the composition of the measurement setup, selecting the object tracking methods, post-processing of the motion trajectories, 3D trajectory reconstruction, and characterizing and visualizing the movement data. We demonstrate the framework in a context where 3D touch screen usability is studied with 3D stimuli.Peer reviewe

    Meta-Tracker: Fast and Robust Online Adaptation for Visual Object Trackers

    Full text link
    This paper improves state-of-the-art visual object trackers that use online adaptation. Our core contribution is an offline meta-learning-based method to adjust the initial deep networks used in online adaptation-based tracking. The meta learning is driven by the goal of deep networks that can quickly be adapted to robustly model a particular target in future frames. Ideally the resulting models focus on features that are useful for future frames, and avoid overfitting to background clutter, small parts of the target, or noise. By enforcing a small number of update iterations during meta-learning, the resulting networks train significantly faster. We demonstrate this approach on top of the high performance tracking approaches: tracking-by-detection based MDNet and the correlation based CREST. Experimental results on standard benchmarks, OTB2015 and VOT2016, show that our meta-learned versions of both trackers improve speed, accuracy, and robustness.Comment: Code: https://github.com/silverbottlep/meta_tracker
    corecore